[1] KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993, 71(13): 2022-2025. [2] LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736. [3] 沈超明, 黄 杰, 陈墨林, 等. 基于多层S型局域振子的声子晶体双层梁结构带隙特性研究[J]. 振动与冲击, 2023, 42(2): 197-204. SHEN C M, HUANG J, CHEN M L, et al. Band gap characteristics analysis of a phononic crystal double-layer beam structure based on multi-layer S-type local oscillator[J]. Journal of Vibration and Shock, 2023, 42(2): 197-204 (in Chinese). [4] 韩东海, 张广军, 赵静波, 等. 新型Helmholtz型声子晶体的低频带隙及隔声特性[J]. 物理学报, 2022, 71(11): 114301. HAN D H, ZHANG G J, ZHAO J B, et al. Low-frequency bandgaps and sound isolation characteristics of a novel Helmholtz-type phononic crystal[J]. Acta Physica Sinica, 2022, 71(11): 114301 (in Chinese). [5] 胡培洲, 赵静波, 刘 红, 等. 一种新型二维声子晶体的低频带隙特性及其形成机理[J]. 人工晶体学报, 2023, 52(8): 1432-1440. HU P Z, ZHAO J B, LIU H, et al. Low-frequency band gap of novel two-dimensional phonon crystal and its formation mechanism[J]. Journal of Synthetic Crystals, 2023, 52(8): 1432-1440 (in Chinese). [6] 同志学, 齐小军, 李丽霞. 考虑橡胶质量的两级局域共振子梁的振动研究[J]. 机械设计与制造, 2020(10): 71-75. TONG Z X, QI X J, LI L X. Research on the vibration of a beam with two-stage local resonators considering rubber mass[J]. Machinery Design & Manufacture, 2020(10): 71-75 (in Chinese). [7] 李彬生, 戴卓辰, 张 程, 等. 新型多共振腔声子晶体声屏障的带隙机理及其隔声性能研究[J]. 振动与冲击, 2023, 42(15): 182-189. LI B S, DAI Z C, ZHANG C, et al. Bandgap mechanism and sound insulation performance of a novel multi-resonant cavity sonic crystal sound barrier[J]. Journal of Vibration and Shock, 2023, 42(15): 182-189 (in Chinese). [8] 胡启国, 白 熊, 魏 晨, 等. 声子晶体中低频减振降噪技术及带隙特性研究[J]. 陕西科技大学学报, 2023, 41(1): 144-150. HU Q G, BAI X, WEI C, et al. Study on medium-low frequency vibration and noise reduction technology and bandgap characteristics of phononic crystal[J]. Journal of Shaanxi University of Science & Technology, 2023, 41(1): 144-150 (in Chinese). [9] 李丽霞, 杨继博, 吕锐翔, 等. 新型环状谐振径向弹性超材料结构低频带隙机理研究[J]. 西安交通大学学报, 2020, 54(11): 91-97. LI L X, YANG J B, LU R X, et al. Low-frequency band gap mechanism of radial elastic metamaterial with new ring resonance[J]. Journal of Xi’an Jiaotong University, 2020, 54(11): 91-97 (in Chinese). [10] LIU C R, WU J H, MA F Y, et al. A thin multi-order Helmholtz metamaterial with perfect broadband acoustic absorption[J]. Applied Physics Express, 2019, 12(8): 084002. [11] DUAN M Y, YU C L, XU Z M, et al. Acoustic impedance regulation of Helmholtz resonators for perfect sound absorption via roughened embedded necks[J]. Applied Physics Letters, 2020, 117(15): 151904. [12] WU W W, GUAN Y H. Numerical investigation on low-frequency noise damping performances of Helmholtz resonators with an extended neck in presence of a grazing flow[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2021, 40(4): 2037-2053. [13] KIM M, LEE K, BOK E, et al. Broadband muffler by merging negative density and negative compressibility[J]. Applied Acoustics, 2023, 208: 109373. [14] GEBREKIDAN S B, KIM H J, SONG S J. Investigation of Helmholtz resonator-based composite acoustic metamaterial[J]. Applied Physics A, 2019, 125(1): 65. [15] WANG Z G, LEE S H, KIM C K, et al. Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators[J]. Journal of Applied Physics, 2008, 103(6): 64907-64907-10. [16] JING L, WU J H, GUAN D, et al. Multilayer-split-tube resonators with low-frequency band gaps in phononic crystals[J]. Journal of Applied Physics, 2014, 116(10): 7. [17] GUAN D, WU J H, JING L, et al. Application of a Helmholtz structure for low frequency noise reduction[J]. Noise Control Engineering Journal, 2015, 63(1): 20-35. [18] SONG Y, CHEN C Z, ZHANG D C, et al. Low-frequency BG analysis and structural optimization of toroidal Helmholtz phononic crystal[J]. Journal of Vibration Engineering & Technologies, 2023. https://doi.org/10.1007/s42417-023-01209-8. |