[1] XIE Z L, GRAULE M, ORLOVSKAYA N, et al. Novel high pressure hexagonal OsB2 by mechanochemistry[J]. Journal of Solid State Chemistry, 2014, 215: 16-21. [2] ZHENG X, LONG Y, ZOU C H, et al. Thermal stability and hardness of ReB2 type hexagonal OsB2 with the addition of W[J]. Ceramics International, 2018, 44(14): 16302-16306. [3] 张立宏, 雷慧茹. 高压下ReB2的结构特性及弹性性质[J]. 人工晶体学报, 2021, 50(12): 2255-2261. ZHANG L H, LEI H R. Structural characteristic and elastic property of ReB2 under high pressure[J]. Journal of Synthetic Crystals, 2021, 50(12): 2255-2261 (in Chinese). [4] YANG A C, DUAN Y H, PENG M J. Effects of temperature and pressure on the mechanical and thermodynamic properties of high-boride WB4 from first-principles predictions[J]. Materials Today Communications, 2022, 30: 103187. [5] ZHANG M, LU M C, DU Y H, et al. Hardness of FeB4: density functional theory investigation[J]. The Journal of Chemical Physics, 2014, 140(17): 174505. [6] CHUNG H Y, WEINBERGER M B, YANG J M, et al. Correlation between hardness and elastic moduli of the ultraincompressible transition metal diborides RuB2, OsB2, and ReB2[J]. Applied Physics Letters, 2008, 92(26): 261904. [7] 刘洪江, 潘 勇, 管伟明, 等. 过渡金属硼化物超硬材料的研究进展[J]. 稀有金属, 2013, 37(4): 633-640. LIU H J, PAN Y, GUAN W M, et al. Research progress in superhard transition metal borides[J]. Chinese Journal of Rare Metals, 2013, 37(4): 633-640 (in Chinese). [8] XU H B, WANG Y X, LO V C. First-principles study of CrB4 as a high shear modulus compound[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2011, 5(1): 13-15. [9] ANDERSSON S, LUNDSTRÖM T, ANDRESEN A F, et al. The crystal structure of CrB4[J]. Acta Chemica Scandinavica, 1968, 22: 3103-3110. [10] KNAPPSCHNEIDER A, LITTERSCHEID C, KURZMAN J, et al. Crystal structure refinement and bonding patterns of CrB4: a boron-rich boride with a framework of tetrahedrally coordinated B atoms[J]. Inorganic Chemistry, 2011, 50(21): 10540-10542. [11] BIALON A F, HAMMERSCHMIDT T, DRAUTZ R, et al. Possible routes for synthesis of new boron-rich Fe-B and Fe1-xCrxB4 compounds[J]. Applied Physics Letters, 2011, 98(8): 081901. [12] NIU H Y, WANG J Q, CHEN X Q, et al. Structure, bonding, and possible superhardness of CrB4[J]. Physical Review B, 2012, 85(14): 144116. [13] WANG S, YU X, ZHANG J, et al. Crystal structures, elastic properties, and hardness of high-pressure synthesized CrB2 and CrB4[J]. Journal of Superhard Materials, 2014, 36(4): 279-287. [14] XU C, LI Q, LIU C M, et al. Structural stabilities, elastic and electronic properties of chromium tetraboride from first-principles calculations[J]. International Journal of Modern Physics B, 2016, 30(17): 1650098. [15] ZHANG Y K, WU L L, WAN B, et al. Structural variety beyond appearance: high-pressure phases of CrB4 in comparison with FeB4[J]. Physical Chemistry Chemical Physics, 2016, 18(4): 2361-2368. [16] 邢 旭, 尹成斌, 马贝贝, 等. Mg8Sn4-xMx结构稳定性与弹性常数的第一性原理计算[J]. 原子与分子物理学报, 2024, 41(2): 157-162. XING X, YIN C B, MA B B, et al. First-principles calculations on the structural stability and elastic constant of Mg8Sn4-xMx[J]. Journal of Atomic and Molecular Physics, 2024, 41(2): 157-162 (in Chinese). [17] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. [18] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, Condensed Matter, 1990, 41(11): 7892-7895. [19] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, Condensed Matter, 1992, 46(11): 6671-6687. [20] WANI T. First-principles calculations of thermodynamic properties of ZrB2[J]. Archives of Thermodynamics, 2017, 39(4): 113-124. [21] KARKI B B, ACKLAND G J, CRAIN J. Elastic instabilities in crystals from ab initio stress-strain relations[J]. Journal of Physics: Condensed Matter, 1997, 9(41): 8579-8589. [22] BOOTCHANONT A, PHACHEERAK K, FONGKAEW I, et al. The pressure effect on the structural, elastic, and mechanical properties of orthorhombic MgSiN2 from first-principles calculations[J]. Solid State Communications, 2021, 336: 114318. [23] HILL R. Elastic properties of reinforced solids: some theoretical principles[J]. Journal of the Mechanics and Physics of Solids, 11(5): 357-372. [24] FRANTSEVICH I N, VORONOV F F, BOKUTA S A. Elastic constants and elastic moduli of metals and insulators[M]. Kiev: Naukova Dumka, 1983. [25] PUGH S. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. Philosophical Magazine Series 1, 1954, 45: 823-843. [26] PAN Y, LIN Y H, WEN M, et al. Correlation between hardness and pressure of CrB4[J]. RSC Advances, 2014, 4(109): 63891-63896. [27] RAVINDRAN P, FAST L, KORZHAVYI P A, et al. Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2[J]. Journal of Applied Physics, 1998, 84(9): 4891-4904. [28] CHEN X Q, NIU H Y, LI D Z, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses[J]. Intermetallics, 2011, 19(9): 1275-1281. |