[1] FUJIWARA H, PODRAZA N J, ALONSO M I, et al. Organic-inorganic hybrid perovskite solar cells[M]//FUJIWARA H, COLLINS R. Spectroscopic Ellipsometry for Photovoltaics. Cham: Springer, 2018: 463-507. [2] CAO X B, HAO L, LIU Z J, et al. All green solvent engineering of organic-inorganic hybrid perovskite layer for high-performance solar cells[J]. Chemical Engineering Journal, 2022, 437: 135458. [3] YANG Z B, RAJAGOPAL A, JEN A K Y. Ideal bandgap organic-inorganic hybrid perovskite solar cells[J]. Advanced Materials, 2017, 29(47): 1704418. [4] SONG J S, LIU H P, PU W H, et al. Thermal instability originating from the interface between organic-inorganic hybrid perovskites and oxide electron transport layers[J]. Energy & Environmental Science, 2022, 15(11): 4836-4849. [5] LI W, ROTHMANN M U, ZHU Y, et al. The critical role of composition-dependent intragrain planar defects in the performance of MA1-xFAxPbI3 perovskite solar cells[J]. Nature Energy, 2021, 6: 624-632. [6] ALI N, SHEHZAD N, UDDIN S, et al. A review on perovskite materials with solar cell prospective[J]. International Journal of Energy Research, 2021, 45(14): 19729-19745. [7] SMECCA E, NUMATA Y, DERETZIS I, et al. Stability of solution-processed MAPbI3 and FAPbI3 layers[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 18(19): 13413-13422. [8] MUHAMMAD Z, LIU P T, AHMAD R, et al. Tunable relativistic quasiparticle electronic and excitonic behavior of the FAPb(I1-xBrx)3 alloy[J]. Physical Chemistry Chemical Physics, 2020, 22(21): 11943-11955. [9] DAI J, FU Y P, MANGER L H, et al. Carrier decay properties of mixed cation formamidinium-methylammonium lead iodide perovskite [HC(NH2)2]1-x[CH3NH3]xPbI3 nanorods[J]. The Journal of Physical Chemistry Letters, 2016, 7(24): 5036-5043. [10] ZHOU Y Y, ZHOU Z M, CHEN M, et al. Doping and alloying for improved perovskite solar cells[J]. Journal of Materials Chemistry A, 2016, 4(45): 17623-17635. [11] COLELLA S, MOSCONI E, FEDELI P, et al. MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties[J]. MRS Online Proceedings Library, 2014, 1667(1): 41-46. [12] WEHRENFENNIG C, LIU M Z, SNAITH H J, et al. Homogeneous emission line broadening in the organo lead halide perovskite CH3NH3PbI3-xClx[J]. The Journal of Physical Chemistry Letters, 2014, 5(8): 1300-1306. [13] LEHMANN F, FRANZ A, TÖBBENS D M, et al. The phase diagram of a mixed halide (Br, I) hybrid perovskite obtained by synchrotron X-ray diffraction[J]. RSC Advances, 2019, 9(20): 11151-11159. [14] FAN W S, SHI Y L, SHI T F, et al. Suppression and reversion of light-induced phase separation in mixed-halide perovskites by oxygen passivation[J]. ACS Energy Letters, 2019, 4(9): 2052-2058. [15] LV S L, PANG S P, ZHOU Y Y, et al. One-step, solution-processed formamidinium lead trihalide (FAPbI(3-x) Clx) for mesoscopic perovskite-polymer solar cells[J]. Physical Chemistry Chemical Physics, 2014, 16(36): 19206-19211. [16] LYU M, PARK N G. Effect of additives AX (A=FA, MA, Cs, Rb, NH4, X=Cl, Br, I) in FAPbI3 on photovoltaic parameters of perovskite solar cells[J]. Solar RRL, 2020, 4(10): 2000331. [17] ZHU J, QIAN Y T, LI Z J, et al. Defect healing in FAPb(I1-xBrx)3 perovskites: multifunctional fluorinated sulfonate surfactant anchoring enables >21% modules with improved operation stability[J]. Advanced Energy Materials, 2022, 12(20): 2200632. [18] MAYENGBAM R, MAZUMDER J T. Revealing the ground-state geometry, optoelectronic, mechanical and thermodynamic behaviors, and efficiency of formamidinium mixed halide perovskites for solar cell applications[J]. International Journal of Energy Research, 2022, 46(12): 17556-17575. [19] LONG M Z, ZHANG T K, XU W Y, et al. Large-grain formamidinium PbI3-xBrx for high-performance perovskite solar cells via intermediate halide exchange[J]. Advanced Energy Materials, 2017, 7(12): 1601882. [20] WANG M, DUAN J L, DU J, et al. High-efficiency all-inorganic perovskite solar cells tailored by scalable rutile TiO2 nanorod arrays with excellent stability[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12091-12098. [21] 司浩楠, 张 铮, 廖庆亮, 等. ZnO纳米结构及其在钙钛矿光伏电池中的应用[J]. 科学通报, 2020, 65(25): 2721-2739. SI H N, ZHANG Z, LIAO Q L, et al. ZnO nanostructures and the application in perovskite solar cells[J]. Chinese Science Bulletin, 2020, 65(25): 2721-2739 (in Chinese). [22] WANG H, YUAN J F, XI J H, et al. Multiple-function surface engineering of SnO2 nanoparticles to achieve efficient perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2021, 12(37): 9142-9148. [23] 卢 岳, 葛 杨, 隋曼龄. 紫外光辐照下CH3NH3PbI3基钙钛矿太阳能电池失效机制[J]. 物理化学学报, 2022, 38(5): 76-86. LU Y, GE Y, SUI M L. Degradation mechanism of CH3NH3PbI3-based perovskite solar cells under ultraviolet illumination[J]. Acta Physico-Chimica Sinica, 2022, 38(5): 76-86 (in Chinese). [24] LIU H F, HUANG Z R, WEI S Y, et al. Nano-structured electron transporting materials for perovskite solar cells[J]. Nanoscale, 2016, 8(12): 6209-6221. [25] ZHANG Z, KANG Z, LIAO Q L, et al. One-dimensional ZnO nanostructure-based optoelectronics[J]. Chinese Physics B, 2017, 26(11): 118102. [26] MANSPEAKER C, SCRUGGS P, PREISS J, et al. Reliable annealing of CH3NH3PbI3 films deposited on ZnO[J]. The Journal of Physical Chemistry C, 2016, 120(12): 6377-6382. [27] DKHISSI Y, MEYER S, CHEN D H, et al. Stability comparison of perovskite solar cells based on zinc oxide and titania on polymer substrates[J]. ChemSusChem, 2016, 9(7): 687-695. [28] PALAI A, PANDA N R, SAHOO M R, et al. Study on the electronic band structure of ZnO-SnO2 heterostructured nanocomposites with mechanistic investigation on the enhanced photoluminescence and photocatalytic properties[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(12): 9599-9615. [29] ZHANG Z, LUO B C, WANG X, et al. Electronic structure and optical properties of SnO2/HC(NH2)2PbI3 interfaces from first-principles calculations[J]. Surfaces and Interfaces, 2021, 23: 100913. [30] WANG V, XU N, LIU J C, et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033. [31] 丁 超, 李 卫, 刘菊燕, 等. Sb, S共掺杂SnO2电子结构的第一性原理分析[J]. 物理学报, 2018, 67(21): 213102. DING C, LI W, LIU J Y, et al. First principle study of electronic structure of Sb, S Co-doped SnO2[J]. Acta Physica Sinica, 2018, 67(21): 213102 (in Chinese). [32] WANG Y F, MEI X Y, QIU J M, et al. Insight into the interface engineering of a SnO2/FAPbI3 perovskite using lead halide as an interlayer: a first-principles study[J]. The Journal of Physical Chemistry Letters, 2021, 12(46): 11330-11338. [33] FAN F R, LIU D Y, WU Y F, et al. Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes[J]. Journal of the American Chemical Society, 2008, 130(22): 6949-6951. [34] LIU J, ZHANG J T. Nanointerface chemistry: lattice-mismatch-directed synthesis and application of hybrid nanocrystals[J]. Chemical Reviews, 2020, 120(4): 2123-2170. [35] WANG L F, SI F J, TANG F L, et al. Electronic and optical properties of SnO2 (110)/MAPbI3 (100) interface by first-principles calculations[J]. Materials Research Express, 2018, 6(2): 026312. [36] SI F J, TANG F L, XUE H T. Electronic properties of NiO (1 1 0)/CH3NH3PbI3 (1 0 0) interface from the first-principles calculations[J]. Chemical Physics Letters, 2018, 707: 133-139. [37] HU W, SI F J, XUE H T, et al. Electronic and optical properties of the SnO2/CsPbI3 interface: using first principles calculations[J]. Catalysis Today, 2021, 374: 208-213. [38] CHENG Y W, TANG F L, XUE H T, et al. First-principles study on electronic properties and lattice structures of WZ-ZnO/CdS interface[J]. Materials Science in Semiconductor Processing, 2016, 45: 9-16. [39] HU J, ZHENG S L, ZHAO X, et al. A theoretical study on the surface and interfacial properties of Ni3P for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2018, 6(17): 7827-7834. [40] LI C, XU Y, SHENG W, et al. A promising blue phosphorene/C2N van der Waals type-II heterojunction as a solar photocatalyst: a first-principles study[J]. Physical Chemistry Chemical Physics: PCCP, 2020, 22(2): 615-623. [41] HU W, AN J P, SI F J, et al. First-principles study of electronic properties of SnO2/CsPbI2Br interface[J]. Journal of Electronic Materials, 2021, 50(4): 2129-2136. |