[1] ZHANG C L, MA R H, QI W, et al. Photocatalytic degradation of organic pollutants in wastewater by heteropolyacids: a review[J]. Journal of Coordination Chemistry, 2021, 74(11): 1751-1764. [2] DING J, YANG Z Q, HE C, et al. UiO-66(Zr) coupled with Bi2MoO6 as photocatalyst for visible-light promoted dye degradation[J]. Journal of Colloid and Interface Science, 2017, 497: 126-133. [3] HOMAEIGOHAR S. The nanosized dye adsorbents for water treatment[J]. Nanomaterials, 2020, 10(2): 295. [4] KESHTA B E, YU H, WANG L, et al. Cutting-edge in the green synthesis of MIL-101(Cr) MOF based on organic and inorganic waste recycling with extraordinary removal for anionic dye[J]. Separation and Purification Technology, 2024, 332: 125744. [5] YANG N, JUN B M, CHOI J S, et al. Ultrasonic treatment of dye chemicals in wastewater: a review[J]. Chemosphere, 2024, 354: 141676. [6] NISHIOKA S, OSTERLOH F E, WANG X C, et al. Photocatalytic water splitting[J]. Nature Reviews Methods Primers, 2023, 3: 42. [7] HU J Y, TIAN K, JIANG H. Improvement of phenol photodegradation efficiency by a combined g-C3N4/Fe(III)/persulfate system[J]. Chemosphere, 2016, 148: 34-40. [8] WANG H H, SUN S D, DING M Q, et al. Mechanism insight into boosting photocatalytic purification of tetracycline hydrochloride over 2D/2D S-scheme (BiO)2CO3/BiOCl heterojunctions[J]. Journal of Environmental Chemical Engineering, 2024, 12(3): 112723. [9] WANG S J, SONG D X, LIAO L J, et al. Surface and interface engineering of BiOCl nanomaterials and their photocatalytic applications[J]. Advances in Colloid and Interface Science, 2024, 324: 103088. [10] ZHOU Y Y, XU Z F, TANG L F, et al. Internal electric field facilitates facet-dependent photocatalytic Cl- utilization on BiOCl in high-salinity wastewater for ammonium removal[J]. Environmental Science & Technology, 2024, 58(13): 6049-6057. [11] MA H C, WANG Y M, ZHANG Z A, et al. A superior ternary Z-scheme photocatalyst of Bi/black phosphorus nanosheets/P-doped BiOCl containing interfacial P-P bond and metallic mediator for H2O2 production and RhB degradation[J]. Chemosphere, 2023, 330: 138717. [12] HUANG Z A, WU J D, MA M Z, et al. The selective production of CH4 via photocatalytic CO2 reduction over Pd-modified BiOCl[J]. New Journal of Chemistry, 2022, 46(35): 16889-16898. [13] XIE K F, XU S Y, XU K, et al. BiOCl Heterojunction photocatalyst: construction, photocatalytic performance, and applications[J]. Chemosphere, 2023, 317: 137823. [14] PEÑAS-GARZÓN M, SAMPAIO M J, WANG Y L, et al. Solar photocatalytic degradation of parabens using UiO-66-NH2[J]. Separation and Purification Technology, 2022, 286: 120467. [15] 高 远, 赵 珊, 梁转转, 等. Bi2WO6/UiO-66复合材料的制备与光催化性能研究[J]. 环境科学学报, 2022, 42(8): 179-185. GAO Y, ZHAO S, LIANG Z Z, et al. Preparation and photocatalytic performance of Bi2WO6/UiO-66 Composite[J]. Acta Scientiae Circumstantiae, 2022, 42(8): 179-185 (in Chinese). [16] CHEN Q, HE Q Q, LV M M, et al. Selective adsorption of cationic dyes by UiO-66-NH2[J]. Applied Surface Science, 2015, 327: 77-85. [17] ZOU Z W, XU H M, LI D Y, et al. Facile preparation and photocatalytic activity of oxygen vacancy rich BiOCl with {001}exposed reactive facets[J]. Applied Surface Science, 2019, 463: 1011-1018. [18] SUN Y W, QI X, LI R Q, et al. Hydrothermal synthesis of 2D/2D BiOCl/g-C3N4 Z-scheme: for TC degradation and antimicrobial activity evaluation[J]. Optical Materials, 2020, 108: 110170. [19] HU Q S, CHEN Y, LI M, et al. Construction of NH2-UiO-66/BiOBr composites with boosted photocatalytic activity for the removal of contaminants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579: 123625. [20] BARIKI R, MAJHI D, DAS K, et al. Facile synthesis and photocatalytic efficacy of UiO-66/CdIn2S4 nanocomposites with flowerlike 3D-microspheres towards aqueous phase decontamination of triclosan and H2 evolution[J]. Applied Catalysis B: Environmental, 2020, 270: 118882. [21] WANG J L, LIU X, LI C S, et al. Fabrication of perylene imide-modified NH2-UiO-66 for enhanced visible-light photocatalytic degradation of tetracycline[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401: 112795. [22] PAN Y, YUAN X Z, JIANG L B, et al. Stable self-assembly AgI/UiO-66(NH2) heterojunction as efficient visible-light responsive photocatalyst for tetracycline degradation and mechanism insight[J]. Chemical Engineering Journal, 2020, 384: 123310. [23] ZHENG X H, XU M N, CAI C B, et al. Enhanced photocatalytic activity of BiOCl/BiOBr/SnS2 heterojunction using a superfine SnS2 and double S-scheme[J]. Journal of Alloys and Compounds, 2024, 980: 173630. [24] WEI Y L, DING Y Y, CHEN Y B, et al. Fabrication of one-dimensional visible-light-driven BiOCl@WO3 p-n heterojunction with improved photocatalytic performance[J]. Materials Science in Semiconductor Processing, 2022, 143: 106539. [25] ZHANG W J, HUANG Z L, ZHANG L Y, et al. Construction of zinc-oxygen double vacancies BiOCl/ZnS Z-scheme heterojunction and photocatalytic degradation of norfloxacin[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109979. |