[1] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7: 105-114. [2] TAN G J, ZHAO L D, KANATZIDIS M G. Rationally designing high-performance bulk thermoelectric materials[J]. Chemical Reviews, 2016, 116(19): 12123-12149. [3] FALEEV S V, LEONARD F. Theory of enhancement of thermoelectric properties of materials with nanoinclusions[J]. Physical Review B, 2008, 77(21): 214304. [4] PEI Y Z, SHI X Y, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature, 2011, 473: 66-69. [5] ZHU T J, LIU Y T, FU C G, et al. Compromise and synergy in high-efficiency thermoelectric materials[J]. Advanced Materials, 2017, 29(14): 1605884. [6] PEI Y Z, MAY A F, SNYDER G J. Self-tuning the carrier concentration of PbTe/Ag2Te composites with excess Ag for high thermoelectric performance[J]. Advanced Energy Materials, 2011, 1(2): 291-296. [7] YOU L, ZHANG J Y, PAN S S, et al. Realization of higher thermoelectric performance by dynamic doping of copper in n-type PbTe[J]. Energy & Environmental Science, 2019, 12(10): 3089-3098. [8] YANG L, CHEN Z G, HAN G, et al. High-performance thermoelectric Cu2Se nanoplates through nanostructure engineering[J]. Nano Energy, 2015, 16: 367-374. [9] HU Q J, ZHU Z, ZHANG Y W, et al. Remarkably high thermoelectric performance of Cu2-xLixSe bulks with nanopores[J]. Journal of Materials Chemistry A, 2018, 6(46): 23417-23424. [10] ZHANG K M, ZHANG Q H, WANG L J, et al. Enhanced thermoelectric performance of Se-doped PbTe bulk materials via nanostructuring and multi-scale hierarchical architecture[J]. Journal of Alloys and Compounds, 2017, 725: 563-572. [11] GAHTORI B, BATHULA S, TYAGI K, et al. Giant enhancement in thermoelectric performance of copper selenide by incorporation of different nanoscale dimensional defect features[J]. Nano Energy, 2015, 13: 36-46. [12] HE Y, DAY T, ZHANG T S, et al. High thermoelectric performance in non-toxic earth-abundant copper sulfide[J]. Advanced Materials, 2014, 26(23): 3974-3978. [13] LIU H L, SHI X, XU F F, et al. Copper ion liquid-like thermoelectrics[J]. Nature Materials, 2012, 11: 422-425. [14] LIU H L, YUAN X, LU P, et al. Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1-xIx[J]. Advanced Materials, 2013, 25(45): 6607-6612. [15] CHEN Z H, ZHANG J H, DENG S Q, et al. Morphology-controlled synthesis of Cu2O encapsulated phase change materials: photothermal conversion and storage performance in visible light regime[J]. Chemical Engineering Journal, 2023, 454: 140089. [16] ZHOU C J, LEE Y K, YU Y, et al. Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal[J]. Nature Materials, 2021, 20: 1378-1384. [17] NIERODA P, KUSIOR A, LESZCZYŃSKI J, et al. Thermoelectric properties of Cu2Se synthesized by hydrothermal method and densified by SPS technique[J]. Materials, 2021, 14(13): 3650. [18] LIU W D, SHI X L, MOSHWAN R, et al. Solvothermal synthesis of high-purity porous Cu1.7Se approaching low lattice thermal conductivity[J].Chemical Engineering Journal, 2019, 375: 121996. [19] KONG F F, BAI J, BI P, et al. Size effect enhanced thermoelectric properties of nanoscale Cu2-xSe[J]. Ceramics International, 2019, 45(7): 8866-8872. [20] ZHAO K P, QIU P F, SONG Q F, et al. Ultrahigh thermoelectric performance in Cu2-ySe0.5S0.5 liquid-like materials[J]. Materials Today Physics, 2017, 1: 14-23. [21] BISWAS K, HE J Q, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489: 414-418. [22] HE J, TRITT T M. Advances in thermoelectric materials research: looking back and moving forward[J]. Science, 2017, 357(6358): eaak9997. [23] NUNNA R, QIU P F, YIN M J, et al. Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs[J]. Energy & Environmental Science, 2017, 10(9): 1928-1935. |