[1] SEEGER K. Semiconductor physics[M]. New York: Springer-Verlag, 1982. [2] CHEN H Y, WEI T R, ZHAO K P, et al. Room-temperature plastic inorganic semiconductors for flexible and deformable electronics[J]. InfoMat, 2021, 3(1): 22-35. [3] GREEN D J. An introduction to the mechanical properties of ceramics[M]. Cambridge: Cambridge University Press, 1998. [4] WEI T R, JIN M, WANG Y C, et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe[J]. Science, 2020, 369(6503): 542-545. [5] HAN X D. Ductile van der Waals materials[J]. Science, 2020, 369(6503): 509. [6] MUDD G W, SVATEK S A, REN T H, et al. Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement[J]. Advanced Materials, 2013, 25(40): 5714-5718. [7] BANDURIN D A, TYURNINA A V, YU G L, et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe[J]. Nature Nanotechnology, 2017, 12: 223-227. [8] LEI S D, GE L H, NAJMAEI S, et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe[J]. ACS Nano, 2014, 8(2): 1263-1272. [9] WU F, XIA H, SUN H D, et al. AsP/InSe van der waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity[J]. Advanced Functional Materials, 2019, 29(12): 1900314. [10] ZHOU J D, SHI J, ZENG Q S, et al. InSe monolayer: synthesis, structure and ultra-high second-harmonic generation[J]. 2D Materials, 2018, 5(2): 025019. [11] SHIGETOMI S, OHKUBO H, IKARI T, et al. Zn-induced impurity levels in layer semiconductor InSe[J]. Journal of Applied Physics, 1989, 66(8): 3647-3650. [12] MICOCCI G, TEPORE A, RELLA R, et al. Electrical properties of indium selenide single crystals doped with tin[J]. Solar Energy Materials and Solar Cells, 1992, 26(1/2): 159-167. [13] MICOCCI G, MOLENDINI M, TEPORE A, et al. Investigation of the electrical properties of Cd-doped indium selenide[J]. Journal of Applied Physics, 1991, 70(11): 6847-6853. [14] SIKLIGAR S P, PRAJAPATI N N, PATEL H M, et al. Influence of Anitmony doping on electrical and photoelectrical response in Indium Selenide crystals[J]. Journal of Crystal Growth, 2024, 626: 127457. [15] BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979. [16] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [17] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. [18] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. [19] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. [20] KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[J]. Physical Review B, Condensed Matter, 1994, 49(20): 14251-14269. [21] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, Condensed Matter, 1993, 47(1): 558-561. [22] SUN M J, WANG W, ZHAO Q H, et al. ε-InSe single crystals grown by a horizontal gradient freeze method[J]. CrystEngComm, 2020, 22(45): 7864-7869. [23] GRIMALDI I, GERACE T, PIPITA M M, et al. Structural investigation of InSe layered semiconductors[J]. Solid State Communications, 2020, 311: 113855. [24] SONG C Y, FAN F R, XUAN N N, et al. Drastic enhancement of the Raman intensity in few-layer InSe by uniaxial strain[J]. Physical Review B, 2019, 99(19): 195414. [25] WU M, XIE Q Y, WU Y Z, et al. Crystal structure and optical performance in bulk γ-InSe single crystals[J]. AIP Advances, 2019, 9(2): 025013. [26] POPESCU V, ZUNGER A. Effective band structure of random alloys[J]. Physical Review Letters, 2010, 104(23): 236403. [27] POPESCU V, ZUNGER A. Extracting E versus k→ effective band structure from supercell calculations on alloys and impurities[J]. Physical Review B, 2012, 85(8): 085201. [28] MOSCA D H, MATTOSO N, LEPIENSKI C M, et al. Mechanical properties of layered InSe and GaSe single crystals[J]. Journal of Applied Physics, 2002, 91(1): 140-144. [29] SCHUH C A, NIEH T G. A nanoindentation study of serrated flow in bulk metallic glasses[J]. Acta Materialia, 2003, 51(1): 87-99. [30] LEPIENSKI C M, MERUVIA M S, VEIGA W, et al. Mechanical properties of niobium disulfide and its hydrated sodium cation intercalation compound[J]. Journal of Materials Research, 2000, 15(10): 2069-2072. [31] VEIGA W, LEPIENSKI C M. Nanomechanical properties of lead iodide (PbI2) layered crystals[J]. Materials Science and Engineering: A, 2002, 335(1/2): 6-13. [32] VADAPOO R, KRISHNAN S, YILMAZ H, et al. Electronic structure of antimony selenide (Sb2Se3) from GW calculations[J]. Physica Status Solidi (b), 2011, 248(3): 700-705. [33] PATEL P B, DHIMMAR J M, MODI B P, et al. The advancement of compelling Indium Selenide: synthesis, structural studies, optical properties and photoelectrical applications[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(1): 1033-1041. [34] SEGURA A, WÜNSTEL K, CHEVY A. Investigation of impurity levels inn-type indium selenide by means of Hall effect and deep level transient spectroscopy[J]. Applied Physics A, 1983, 31(3): 139-145. |