[1] LIU G, TUTTLE B R, DHAR S. Silicon carbide: a unique platform for metal-oxide-semiconductor physics[J]. Applied Physics Reviews, 2015, 2(2): 021307. [2] LELIS A J, GREEN R, HABERSAT D B, et al. Basic mechanisms of threshold-voltage instability and implications for reliability testing of SiC MOSFETs[J]. IEEE Transactions on Electron Devices, 2015, 62(2): 316-323. [3] KAWAHARA K, JUN S D, KIMOTO T. Deep levels generated by thermal oxidation in n-type 4H-SiC[J]. Applied Physics Express, 2013, 6(5): 051301. [4] HEMMINGSSON C, SON N T, KORDINA O, et al. Deep level defects in electron-irradiated 4H-SiC epitaxial layers[J]. Journal of Applied Physics, 1997, 81(9): 6155-6159. [5] LUO Z Y, CHEN T B, AHYI A C, et al. Proton radiation effects in 4H-SiC diodes and MOS capacitors[J]. IEEE Transactions on Nuclear Science, 2004, 51(6): 3748-3752. [6] LI D X, ZHANG Y M, TANG X Y, et al. Effects of 5 MeV proton irradiation on 1200 V 4H-SiC VDMOSFETs ON-state characteristics[J]. IEEE Access, 2020, 8: 104503-104510. [7] DEÁK P, KNAUP J, THILL C, et al. The mechanism of defect creation and passivation at the SiC/SiO2 interface[J]. Journal of Physics D: Applied Physics, 2008, 41(4): 049801. [8] DAS M K, HANEY S K, RICHMOND J, et al. SiC MOSFET reliability update[J]. Materials Science Forum, 2012, 717/718/719/720: 1073-1076. [9] CASTALDINI A, CAVALLINI A, RIGUTTI L, et al. Low temperature annealing of electron irradiation induced defects in 4H-SiC[J]. Applied Physics Letters, 2004, 85(17): 3780. [10] DONG P, QIN Y Z, YU X G, et al. Electron radiation effects on the 4H-SiC PiN diodes characteristics: an insight from point defects to electrical degradation[J]. IEEE Access, 2019, 7: 170385-170391. [11] 李东洵. 4H-SiC功率VDMOSFET器件辐照效应及加固方法研究[D]. 西安: 西安电子科技大学, 2021. LI D X. Investigation on irradiation effects and hardening methods of 4H-SiC VDMOSFETs[D].Xi'an: Xidian University, 2021 (in Chinese). [12] TAKAKURA K, OHYAMA H, UEMURA K, et al. Effects of radiation-induced defects on device performance in electron-irradiated SiC-MESFETs[J]. Materials Science in Semiconductor Processing, 2006, 9(1/2/3): 327-330. [13] CHBILI Z, MATSUDA A, CHBILI J, et al. Modeling early breakdown failures of gate oxide in SiC power MOSFETs[J]. IEEE Transactions on Electron Devices, 2016, 63(9): 3605-3613. [14] NIGAM T, KERBER A, PEUMANS P. Accurate model for time-dependent dielectric breakdown of high-k metal gate stacks[C]//2009 IEEE International Reliability Physics Symposium. Montreal, QC, Canada. IEEE, 2009: 523-530. [15] ZHU S N, LIU T S, WHITE M H, et al. Investigation of gate leakage current behavior for commercial 1.2 kV 4H-SiC power MOSFETs[C]//2021 IEEE International Reliability Physics Symposium (IRPS). Monterey, CA, USA. IEEE, 2021: 1-7. [16] NISKANEN K, KETTUNEN H, LAHTI M, et al. Effect of 20 MeV electron radiation on long term reliability of SiC power MOSFETs[J]. IEEE Transactions on Nuclear Science, 2023, 70(4): 456-461. [17] POPELKA S, HAZDRA P. Effect of electron irradiation on 1700 V 4H-SiC MOSFET characteristics[J]. Materials Science Forum, 2016, 858: 856-859. [18] COOPER J A. Advances in SiC MOS technology[J]. Physica Status Solidi Applied Research, 1997, 162(1): 305-320. [19] AFANAS'EV V V, STESMANS A, BASSLER M, et al. Shallow electron traps at the 4H-SiC/SiO2 interface[J]. Applied Physics Letters, 2000, 76(3): 336-338. [20] AFANAS'EV V V, CIOBANU F, PENSL G, et al. Contributions to the density of interface states in SiC MOS structures[M]//Silicon Carbide. Berlin, Heidelberg: Springer, 2004: 343-371. [21] BASILE A F, ROZEN J, WILLIAMS J R, et al. Capacitance-voltage and deep-level-transient spectroscopy characterization of defects near SiO2/SiC interfaces[J]. Journal of Applied Physics, 2011, 109(6): 064514. [22] KIMOTO T, YOSHIOKA H, NAKAMURA T. Physics of SiC MOS interface and development of trench MOSFETs[C]//The 1 st IEEE Workshop on Wide Bandgap Power Devices and Applications. Columbus, OH, USA. IEEE, 2013: 135-138. [23] DEVYNCK F, ALKAUSKAS A, BROQVIST P, et al. Charge transition levels of carbon-, oxygen-, and hydrogen-related defects at the SiC/SiO2 interface through hybrid functionals[J]. Physical Review B, 2011, 84(23): 235320. [24] DEVYNCK F, ALKAUSKAS A, BROQVIST P, et al. Defect levels of carbon-related defects at the SiC/SiO2 interface from hybrid functionals[J]. Physical Review B, 2011, 83(19): 195319. [25] KNAUP J M, DEÁK P, FRAUENHEIM T, et al. Defects in SiO2 as the possible origin of near interface traps in the SiCSiO2 system: a systematic theoretical study[J]. Physical Review B, 2005, 72(11): 115323. [26] ROZEN J, DHAR S, PANTELIDES S T, et al. Suppression of interface state generation upon electron injection in nitrided oxides grown on 4H-SiC[J]. Applied Physics Letters, 2007, 91(15): 153503. [27] HUANG L H, LIU Y, PENG X, et al. Static performance and threshold voltage stability improvement of Al2O3/LaAlO3/SiO2 gate-stack for SiC power MOSFETs[J]. IEEE Transactions on Electron Devices, 2022, 69(2): 690-695. |