[1] 王继扬, 吴以成. 光电功能晶体材料研究进展[J]. 中国材料进展, 2010, 29(10): 1-15. WANG J Y, WU Y C. Progress of the research on photoelectronic functional crystals[J]. Materials China, 2010, 29(10): 1-15 (in Chinese). [2] 张克从, 王希敏. 人工晶体的发展[J]. 人工晶体学报, 2002, 31(3): 228-239. ZHANG K C, WANG X M. Development of synthetic crystals[J]. Journal of Synthetic Crystals, 2002, 31(3): 228-239 (in Chinese). [3] 陈创天. 紫外、深紫外非线性光学晶体探索十年回顾[J]. 人工晶体学报, 2001, 30(1): 36-42. CHEN C T. Overview of violet and deep-UV nonlinear optical crystals in the last decade[J]. Journal of Synthetic Crystals, 2001, 30(1): 36-42 (in Chinese). [4] 张克从, 王希敏. 非线性光学晶体材料科学[M]. 2版. 北京: 科学出版社, 2005. ZHANG K C, WANG X M. Nonlinear optical crystal materials science[M]. 2nd ed. Beijing: Science Press, 2005 (in Chinese). [5] 闵乃本. 探索新晶体: 光电功能材料的结构、性能、分子设计及制备过程的研究[M]. 长沙: 湖南科学技术出版社, 1998. MIN N B. Research on the structure, properties, molecular design, and preparation process of optoelectronic functional materials[M]. Changsha:Hunan Science and Technology Publishing, 1998(in Chinese). [6] 张克从, 张乐潓. 晶体生长科学与技术-上册[M]. 2版. 北京: 科学出版社, 1997. ZHANG K C, ZHANG L D. Crystal growth science and technology[M]. 2nd ed. Beijing: Science Press, 1997 (in Chinese). [7] CHRIST C L, CLARK J R. A crystal-chemical classification of borate structures with emphasis on hydrated borates[J]. Physics and Chemistry of Minerals, 1977, 2(1): 59-87. [8] BECKER P. Borate materials in nonlinear optics[J]. Advanced Materials, 1998, 10(13): 979-992. [9] CALVO C, FAGGIANI R. Linear metaborate anions, BO-2, in apatitic phosphates[J]. J Chem Soc, Chem Commun, 1974(17): 714-715. [10] BURNS P, GRICE J, HAWTHORNE F. Borate minerals; I, Polyhedral clusters and fundamental building blocks[J]. Canadian Mineralogist, 1995, 33: 1131-1151. [11] STRUNZ H. Classification of borate minerals[J]. European Journal of Mineralogy, 1997, 9(1): 225-232. [12] TOUBOUL M, PENIN N, NOWOGROCKI G. Borates: a survey of main trends concerning crystal-chemistry, polymorphism and dehydration process of alkaline and pseudo-alkaline borates[J]. Solid State Sciences, 2003, 5(10): 1327-1342. [13] BECKER P. A contribution to borate crystal chemistry: rules for the occurrence of polyborate anion types[J]. Zeitschrift für Kristallographie-Crystalline Materials, 2001, 216: 523-533. [14] WANG Y, ZHANG B B, YANG Z H, et al. Cation-tuned synthesis of fluorooxoborates: towards optimal deep-ultraviolet nonlinear optical materials[J]. Angewandte Chemie, 2018, 57(8): 2150-2154. [15] LI S S, LIU X M, WU H P, et al. Ba4Ca(B2O5)2F2: π-conjugation of B2O5 in the planar pentagonal layer achieving large second harmonic generation of pyro-borate[J]. Chemical Science, 2021, 12(41): 13897-13901. [16] YANG Y, PAN S L, LI H Y, et al. Li4Cs3B7O14: synthesis, crystal structure, and optical properties[J]. Inorganic Chemistry, 2011, 50(6): 2415-2419. [17] WU Y C, LIU J G, FU P Z, et al. A new lanthanum and calcium borate La2CaB10O19[J]. Chemistry of Materials, 2001, 13(3): 753-755. [18] WU H P, YU H W, ZHANG W G, et al. Top-seeded solution crystal growth and linear and nonlinear optical properties of Ba4B11O20F[J]. Crystal Growth & Design, 2017, 17(3): 1404-1410. [19] 陈创天,吴柏昌.中国牌深紫外非线性光学晶体——KBBF和SBBO晶体[J]. 中国科学院院刊, 1999, 14(6): 456-457. CHEN C T, WU B C. Chinese-designed deep UV nonlinear optical crystals: KBBF and SBBO crystals[J]. Bulletin of the Chinese Academy of Sciences, 1999, 14(6): 456-457(in Chinese). [20] CHEN C T, WANG G L, WANG X Y, et al. Deep-UV nonlinear optical crystal KBe2BO3F2—discovery, growth, optical properties and applications[J]. Applied Physics B, 2009, 97(1): 9-25. [21] CHEN C T, WANG Y B, WU B C, et al. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7[J]. Nature, 1995, 373: 322-324. [22] ZHOU G Q, XU J, CHEN X D, et al. Growth and spectrum of a novel birefringent α-BaB2O4 crystal[J]. Journal of Crystal Growth, 1998, 191(3): 517-519. [23] GAO M G, WU H P, YU H W, et al. BaYOBO3: a deep-ultraviolet rare-earth oxy-borate with a large second harmonic generation response[J]. Science China Chemistry, 2021, 64(7): 1184-1191. [24] WU Y, YAO J Y, ZHANG J X, et al. Potassium zinc borate, KZnB3O6[J]. Acta Crystallographica Section E Structure Reports Online, 2010, 66(5): i45. [25] YANG Y, PAN S L, HAN J, et al. A new lithium rubidium borate Li6Rb5B11O22 with isolated B11O22 building blocks[J]. Crystal Growth & Design, 2011, 11(9): 3912-3916. [26] MUTAILIPU M, POEPPELMEIER K R, PAN S L. Borates: a rich source for optical materials[J]. Chemical Reviews, 2021, 121(3): 1130-1202. [27] WANG S C, YE N, LI W, et al. Alkaline beryllium borate NaBeB3O6 and ABe2B3O7 (A = K, Rb) as UV nonlinear optical crystals[J]. Journal of the American Chemical Society, 2010, 132(25): 8779-8786. [28] BURDETT J K, MCLARNAN T J. An orbital interpretation of Pauling's rules[J]. American Mineralogist, 1984, 69(7/8): 601-621. [29] JIANG B, SHU S, YANG Z H, et al. Pb2Al2B3O8F3: structure and properties of a new fluoroaluminoborate with non-traditional chain-like B3O8 groups[J]. Dalton Transactions, 2022, 51(10): 3964-3969. [30] MUTAILIPU M, SU X, ZHANG M, et al. Ban+2Znn(BO3)n(B2O5)Fn (n=1, 2): new members of the zincoborate fluoride series with two kinds of isolated B—O units[J]. Inorganic Chemistry Frontiers, 2017, 4(2): 281-288. [31] LIU K T, HAN J, LI F M, et al. α-LiMB9O15 (M=Sr, Pb): flexible [B3O7] units leading to the low temperature phase of β-LiMB9O15 (M=Sr, Pb)[J]. Inorganic Chemistry Frontiers, 2022, 9(20): 5371-5376. [32] YU H W, WU H P, PAN S L, et al. Cs3Zn6B9O21: a chemically benign member of the KBBF family exhibiting the largest second harmonic generation response[J]. Journal of the American Chemical Society, 2014, 136(4): 1264-1267. [33] YUAN B Q, WU H P, HU Z G, et al. Deep ultraviolet-transparent materials with strong second-harmonic response[J]. Chemistry of Materials, 2022, 34(17): 8004-8012. [34] ZHAO S G, ZHANG G C, YAO J Y, et al. K3YB6O12: a new nonlinear optical crystal with a short UV cutoff edge[J]. Materials Research Bulletin, 2012, 47(11): 3810-3813. [35] GAO M G, BIAN Q, WU H P, et al. Inducing large birefringence by enhancing asymmetric electron distribution of Y—O polyhedra[J]. Inorganic Chemistry Frontiers, 2022, 9(9): 1956-1963. [36] ZHOU J F, GONG P F, XIA M J, et al. Atomic substitution to tune ScO6 distortion in Ba2MSc2(BO3)4 (M=Na, K, Ba) to acquire a large birefringence[J]. Inorganic Chemistry, 2023, 62(23): 8931-8939. [37] MUTAILIPU M, XIE Z Q, SU X, et al. Chemical cosubstitution-oriented design of rare-earth borates as potential ultraviolet nonlinear optical materials[J]. Journal of the American Chemical Society, 2017, 139(50): 18397-18405. [38] SØRENSEN B E. A revised Michel-Lévy interference colour chart based on first-principles calculations[J]. European Journal of Mineralogy, 2013, 25(1): 5-10. |