[1] WANG K C, LI Y P, XIE L H, et al. Construction and application of base-stable MOFs: a critical review[J]. Chemical Society Reviews, 2022, 51(15): 6417-6441. [2] CUI Q Y, QIN G Q, WANG W H, et al. Novel two-dimensional MOF as a promising single-atom electrocatalyst for CO2 reduction: a theoretical study[J]. Applied Surface Science, 2020, 500: 143993. [3] LI X F, LI Q K, CHENG J, et al. Conversion of dinitrogen to ammonia by FeN3-embedded graphene[J]. Journal of the American Chemical Society, 2016, 138(28): 8706-8709. [4] KORDALI V, KYRIACOU G, LAMBROU C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell[J]. Chemical Communications, 2000(17): 1673-1674. [5] BURGESS B K, LOWE D J. Mechanism of molybdenum nitrogenase[J]. Chemical Reviews, 1996, 96(7): 2983-3012. [6] SMIL V. Detonator of the population explosion[J]. Nature, 1999, 400: 415. [7] BERNHARD A. The nitrogen cycle: processes[J]. Players, and Human, 2010, 3:10-25. [8] ZHOU P Y, LV J J, HUANG X B, et al. Strategies for enhancing the catalytic activity and electronic conductivity of MOFs-based electrocatalysts[J]. Coordination Chemistry Reviews, 2023, 478: 214969. [9] HE C, XU C, ZHANG W X. Shortening the screening process towards high-performance 2D-MOF NRR electrocatalysts with ΔμB_TM-μB_X as the descriptor of N2 activation capability[J]. Applied Surface Science, 2022, 606: 154904. [10] KIM S K, ZHANG Y J, BERGSTROM H, et al. Understanding the low-overpotential production of CH4 from CO2 on Mo2C catalysts[J]. ACS Catalysis, 2016, 6(3): 2003-2013. [11] PIRES J C M, MARTINS F G, ALVIM-FERRAZ M C M, et al. Recent developments on carbon capture and storage: an overview[J]. Chemical Engineering Research and Design, 2011, 89(9): 1446-1460. [12] D’ALESSANDRO D, SMIT B, LONG J. Carbon dioxide capture: prospects for new materials[J]. Angewandte Chemie International Edition, 2010, 49(35): 6058-6082. [13] HUANG B, CHEN B B, ZHU G P, et al. Electrochemical ammonia synthesis via NO reduction on 2D-MOF[J]. ChemPhysChem, 2022, 23(4): e202100785. [14] ZHOU Y T, ABAZARI R, CHEN J, et al. Bimetallic metal-organic frameworks and MOF-derived composites: recent progress on electro- and photoelectrocatalytic applications[J]. Coordination Chemistry Reviews, 2022, 451: 214264. [15] CUI Q Y, QIN G Q, WANG W H, et al. Mo-based 2D MOF as a highly efficient electrocatalyst for reduction of N2 to NH3: a density functional theory study[J]. Journal of Materials Chemistry A, 2019, 7(24): 14510-14518. [16] PLOETZ E, ENGELKE H, LÄCHELT U, et al. The chemistry of reticular framework nanoparticles: MOF, ZIF, and COF materials[J]. Advanced Functional Materials, 2020, 30(41):1909062. [17] YANG M, ZHOU Y N, CAO Y N, et al. Advances and challenges of Fe-MOFs based materials as electrocatalysts for water splitting[J]. Applied Materials Today, 2020, 20: 100692. [18] PANDEY S, DEMASKE B, EJEGBAVWO O A, et al. Electronic structures and magnetism of Zr-, Th-, and U-based metal-organic frameworks (MOFs) by density functional theory[J]. Computational Materials Science, 2020, 184: 109903. [19] ALONSO G, BAHAMON D, KESHAVARZ F, et al. Density functional theory-based adsorption isotherms for pure and flue gas mixtures on Mg-MOF-74. application in CO2 capture swing adsorption processes[J]. The Journal of Physical Chemistry C, 2018, 122(7): 3945-3957. [20] LI Y, FU Y Q, NI B L, et al. Effects of ligand functionalization on the photocatalytic properties of titanium-based MOF: a density functional theory study[J]. AIP Advances, 2018, 8(3): 035012. [21] PARKES M V, SAVA GALLIS D F, GREATHOUSE J A, et al. Effect of metal in M3(btc)2 and M2(dobdc) MOFs for O2/N2 separations: a combined density functional theory and experimental study[J]. The Journal of Physical Chemistry C, 2015, 119(12): 6556-6567. [22] QIN L, LIU J L, ZHOU X Y, et al. Improved the electrocatalytic hydrogen evolution performances of co-MOF derivatives through introducing zinc ions by two ways[J]. Energy & Fuels, 2022, 36(11): 5843-5851. [23] XIAO L Y, WANG Z L, GUAN J Q. 2D MOFs and their derivatives for electrocatalytic applications: recent advances and new challenges[J]. Coordination Chemistry Reviews, 2022, 472: 214777. [24] LIN Y T, LI Y H, CAO Y, et al. Two-dimensional MOFs: design & synthesis and applications[J]. Chemistry-An Asian Journal, 2021, 16(21): 3281-3298. [25] GIANNOZZI P, BARONI S, BONINI N, et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials[J]. Journal of Physics Condensed Matter, 2009, 21(39): 395502. [26] ZHANG X, HE T, LIU Y, et al. Magnetic real chern insulator in 2D metal-organic frameworks[J]. Nano Letters, 2023, 23, 7358-7363. [27] PERDEW J P, ERNZERHOF M, BURKE K. Rationale for mixing exact exchange with density functional approximations[J]. The Journal of Chemical Physics, 1996, 105(22): 9982-9985. [28] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799. [29] LAHIRI N, LOTFIZADEH N, TSUCHIKAWA R, et al. Hexaaminobenzene as a building block for a family of 2D Coordination Polymers[J]. Journal of the American Chemical Society, 2017, 139(1): 19-22. [30] UMARI P, PASQUARELLO A, Ab initio molecular dynamics in a finite homogeneous electric field[J]. Physics Review Letter, 2002, 89,157602. [31] SOUZA I, INIGUEZ J, VANDERBILT D, First-principles approach to insulators in finite electric fields[J]. Physics Review Letter, 2002, 89, 117602. [32] FANG X S, BANDO Y, GAUTAM U K, et al. Inorganic semiconductor nanostructures and their field-emission applications[J]. Journal of Materials Chemistry, 2008, 18(5): 509-522. |