[1] ALI F I M, AWWAD F, GREISH Y E, et al. Hydrogen sulfide (H2S) gas sensor: a review[J]. IEEE Sensors Journal, 2019, 19(7): 2394-2407. [2] TRIPATHI S J, CHAKRABORTY S, MILLER E, et al. Hydrogen sulfide signalling in neurodegenerative diseases[J]. British Journal of Pharmacology, 2023: 10.1111/bph.16170. [3] WANG J, REN Y, LIU H, et al. Ultrathin 2D NbWO6 perovskite semiconductor based gas sensors with ultrahigh selectivity under low working temperature[J]. Advanced Materials, 2022, 34(2): 2104958. [4] CHEN C Q, CAI Q, LUO F, et al. Sensitive fluorescent sensor for hydrogen sulfide in rat brain microdialysis via CsPbBr3 quantum dots[J]. Analytical Chemistry, 2019, 91(24): 15915-15921. [5] 崔中杰, 傅雪海, 刘文平, 等. 煤矿瓦斯中H2S的成因危害与防治[J]. 煤矿安全, 2006, 37(9): 45-47. CUI Z J, FU X H, LIU W P, et al. Genesis, hazard and controlling of H2S in coal mine gas[J]. Safety in Coal Mines, 2006, 37(9): 45-47 (in Chinese). [6] BARSAN N, WEIMAR U. Conduction model of metal oxide gas sensors[J]. Journal of Electroceramics, 2001, 7(3): 143-167. [7] SHAN H S, XUAN W F, LI Z, et al. Room-temperature hydrogen sulfide sensor based on tributyltin oxide functionalized perovskite CsPbBr3 quantum dots[J]. ACS Applied Nano Materials, 2022, 5(5): 6801-6809. [8] SONG J, REN Y F, GONG S J, et al. Performance enhancement of crystal silicon solar cell by a CsPbBr3-Cs4PbBr6 perovskite quantum dot @ZnO/ethylene vinyl acetate copolymer downshifting composite film[J]. Solar RRL, 2022, 6(11): 2200336. [9] XUAN W, SHAN H, HU D, et al. In-situ synthesis of stable ZnO-coated CsPbBr3 nanocrystals for room-temperature heptanal sensors[J]. Materials Today Chemistry, 2022, 26: 101155. [10] ZHOU Y Y, HERZ L M, JEN A K Y, et al. Advances and challenges in understanding the microscopic structure-property-performance relationship in perovskite solar cells[J]. Nature Energy, 2022, 7: 794-807. [11] FU P F, SHAN Q S, SHANG Y Q, et al. Perovskite nanocrystals: synthesis, properties and applications[J]. Science Bulletin, 2017, 62(5): 369-380. [12] YANG Y, KIM D S, QIN Y, et al. Unexpected long-term instability of ZnO nanowires “protected” by a TiO2 shell[J]. Journal of the American Chemical Society, 2009, 131(39): 13920-13921. [13] DENG K M, LI L. Advances in the application of atomic layer deposition for organometal halide perovskite solar cells[J]. Advanced Materials Interfaces, 2016, 3(21): 1600505. [14] HU S, SHANER M R, BEARDSLEE J A, et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation[J]. Science, 2014, 344(6187): 1005-1009. [15] YEH M H, CHEN P H, YANG Y C, et al. Investigation of Ag-TiO2 interfacial reaction of highly stable Ag nanowire transparent conductive film with conformal TiO2 coating by atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10788-10797. [16] HUANG J E, MULFORT K L, DU P W, et al. Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production[J]. Journal of the American Chemical Society, 2012, 134(40): 16472-16475. [17] GOMEZ L, DE WEERD C, HUESO J L, et al. Color-stable water-dispersed cesium lead halide perovskite nanocrystals[J]. Nanoscale, 2017, 9(2): 631-636. [18] RAJA S N, BEKENSTEIN Y, KOC M A, et al. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: enhanced stability and polarization[J]. ACS Applied Materials & Interfaces, 2016, 8(51): 35523-35533. [19] HUANG S Q, LI Z C, KONG L, et al. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene[J]. Journal of the American Chemical Society, 2016, 138(18): 5749-5752. [20] LOIUDICE A, SARIS S, OVEISI E, et al. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat[J]. Angewandte Chemie, 2017, 56(36): 10696-10701. [21] LI Z J, HOFMAN E, LI J, et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals[J]. Advanced Functional Materials, 2018, 28(1): 1704288. [22] XU Y F, WANG X D, LIAO J F, et al. Amorphous-TiO2-encapsulated CsPbBr3 nanocrystal composite photocatalyst with enhanced charge separation and CO2 fixation[J]. Advanced Materials Interfaces, 2018, 5(22): 1801015. [23] DONG S H, HU Z Y, WEI P, et al. All-inorganic perovskite single-crystal photoelectric anisotropy[J]. Advanced Materials, 2022, 34(37): e2204342. [24] YANG J P, WANG Y X, LI W, et al. Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage[J]. Advanced Materials, 2017, 29(48): 1700523. [25] XUAN W F, ZHENG L N, CAO L, et al. Machine learning-assisted sensor based on CsPbBr3@ZnO nanocrystals for identifying methanol in mixed environments[J]. ACS Sensors, 2023, 8(3): 1252-1260. [26] AKBARI A, MEHRABIAN M, SALIMI Z, et al. The comparison of antibacterial activities of CsPbBr3 and ZnO nanoparticles[J]. International Nano Letters, 2019, 9(4): 349-353. [27] XU X L, WANG X P, LIU W W, et al. Ambient stable CsPbBr3/ZnO nanostructures for ethanolamine sensing[J]. ACS Applied Nano Materials, 2022, 5(10): 15030-15041. [28] WEI W, ZHANG H H, TAO T Y, et al. A CuO/TiO2 heterojunction based CO sensor with high response and selectivity[J]. Energy & Environmental Materials, 2023, 6(3): 12570. |