[1] HASHIM D A, ALWAN A M, JAWAD M F. Influence of Ag NPs on silicon nanocolumns NH3 gas sensors[J]. Journal of the Electrochemical Society, 2018, 165(14): B773-B778. [2] SUN Y J, SUEMATSU K, WATANABE K, et al. Determination of effective oxygen adsorption species for CO sensing based on electric properties of indium oxide[J]. Journal of the Electrochemical Society, 2018, 165(7): B275-B280. [3] SUEMATSU K, WATANABE K, YUASA M, et al. Effect of ambient oxygen partial pressure on the hydrogen response of SnO2 semiconductor gas sensors[J]. Journal of the Electrochemical Society, 2019, 166(8): B618-B622. [4] ESPID E, ADELI B, TAGHIPOUR F. Enhanced gas sensing performance of photo-activated, Pt-decorated, single-crystal ZnO nanowires[J]. Journal of the Electrochemical Society, 2019, 166(5): H3223-H3230. [5] DUN M H, TAN J F, TAN W H, et al. CdS quantum dots supported by ultrathin porous nanosheets assembled into hollowed-out Co3O4 microspheres: a room-temperature H2S gas sensor with ultra-fast response and recovery[J]. Sensors and Actuators B: Chemical, 2019, 298: 126839. [6] DEY A. Semiconductor metal oxide gas sensors: a review[J]. Materials Science and Engineering: B, 2018, 229: 206-217. [7] LIANG Y, WU C, JIANG S T, et al. Field comparison of electrochemical gas sensor data correction algorithms for ambient air measurements[J]. Sensors and Actuators B: Chemical, 2021, 327: 128897. [8] BOGUE R. Detecting gases with light: a review of optical gas sensor technologies[J]. Sensor Review, 2015, 35(2): 133-140. [9] RITTER T, ZOSEL J, GUTH U. Solid electrolyte gas sensors based on mixed potential principle—a review[J]. Sensors and Actuators B: Chemical, 2023, 382: 133508. [10] HAN J S, YANG L M, YANG L X, et al. PtRu nanoalloys loaded on graphene and TiO2 nanotubes co-modified Ti wire as an active and stable methanol oxidation electrocatalyst[J]. International Journal of Hydrogen Energy, 2018, 43(15): 7338-7346. [11] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. [12] XIAO Z, WU W, WU X W, et al. Adsorption of NO2 on monolayer MoS2 doped with Fe, Co, and Ni, Cu: a computational investigation[J]. Chemical Physics Letters, 2020, 755: 137768. [13] POORNIMADEVI C, PREFERENCIAL KALA C, THIRUVADIGAL D J. Tuning the electronic properties of WS2 monolayer by doping transition metals: dft Approach[J]. Materials Science in Semiconductor Processing, 2023, 157: 107339. [14] ALI A, ZHANG J M, MUHAMMAD I, et al. First-principles investigation on electronic structure, magnetic states and optical properties of Mn-doped SnS2 monolayer via strain engineering[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134: 114842. [15] TANWAR P, PALIWAL U, JOSHI K B, et al. First-principles study of structural, electronic and vibrational properties of bulk and monolayer TiS2[J]. Journal of Physics and Chemistry of Solids, 2023, 179: 111382. [16] TIAN Y, SUN A, GE Z Z, et al. Strain tunable electronic states of MoSe2 monolayer[J]. Chemical Physics Letters, 2021, 765: 138286. [17] QIU P L, QIN Y X, BAI Y N, et al. Gas selectivity regulation of monolayer SnS by introducing nonmetallic dopants: a combined theoretical and experimental investigation[J]. Applied Surface Science, 2021, 570: 151155. [18] HUNG C H, JIANG Y C, LEI S Y, et al. Small gas adsorption on 2D material SnSe: a first-principles study[J]. Journal of Physics D Applied Physics, 2023, 56(39): 395302. [19] PENG R C, ZENG W, ZHOU Q. Adsorption and gas sensing of dissolved gases in transformer oil onto Ru3-modified SnS2: a DFT study[J]. Applied Surface Science, 2023, 615: 156445. [20] NI J M, YANG Z W, SHEN Y, et al. Volatile organic compounds gas molecule adsorption on Fe-MoS2 monolayer: the first-principles study[J]. Chemical Physics Letters, 2023, 813: 140298. [21] CORBET C M, MCCLELLAN C, RAI A, et al. Field effect transistors with current saturation and voltage gain in ultrathin ReS2[J]. ACS Nano, 2015, 9(1): 363-370. [22] TONGAY S, SAHIN H, KO C, et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling[J]. Nature Communications, 2014, 5: 3252. [23] ZENG J W, NIU Y, GONG Y L, et al. All-dry transferred ReS2 nanosheets for ultrasensitive room-temperature NO2 sensing under visible light illumination[J]. ACS Sensors, 2020, 5(10): 3172-3181. [24] ADEPU V, BOKKA N, MATTELA V, et al. A highly electropositive ReS2 based ultra-sensitive flexible humidity sensor for multifunctional applications[J]. New Journal of Chemistry, 2021, 45(13): 5855-5862. [25] ZHOU Q, LUO S F, XUE W, et al. Highly selective nitrogen dioxide gas sensing of ReS2 nanosheets: a first-principles study[J]. Applied Surface Science, 2023, 609: 155388. [26] WANG J C, HE J J, OMOLOLU ODUNMBAKU G, et al. Regulating the electronic structure of ReS2 by Mo doping for electrocatalysis and lithium storage[J]. Chemical Engineering Journal, 2021, 414: 128811. [27] OBODO K O, OUMA C N M, OBODO J T, et al. Influence of transition metal doping on the electronic and optical properties of ReS2 and ReSe2 monolayers[J]. Physical Chemistry Chemical Physics, 2017, 19(29): 19050-19057. [28] LAI F L, CHEN N, YE X B, et al. Refining energy levels in ReS2 nanosheets by low-valent transition-metal doping for dual-boosted electrochemical ammonia/hydrogen production[J]. Advanced Functional Materials, 2020, 30(11): 1907376. [29] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186. [30] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. [31] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [32] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799. [33] LIN Y C, KOMSA H P, YEH C H, et al. Single-layer ReS2: two-dimensional semiconductor with tunable In-plane anisotropy[J]. ACS Nano, 2015, 9(11): 11249-11257. [34] OBODO K O, OUMA C N M, GEBREYESUS G, et al. DFT+U studies of the electronic and optical properties of ReS2 mono-layer doped with lanthanide atoms[J]. Materials Research Express, 2019, 6(10): 106307. [35] GUTIÉRREZ-LEZAMA I, REDDY B A, UBRIG N, et al. Electroluminescence from indirect band gap semiconductor ReS2[J]. 2D Materials, 2016, 3(4): 045016. |