JOURNAL OF SYNTHETIC CRYSTALS ›› 2024, Vol. 53 ›› Issue (11): 1829-1839.
Special Issue: 高功率激光用晶体和透明陶瓷
Previous Articles Next Articles
REN Yongchun1, LI Jianda1, CAO Xiao1, HUANG Yi1, ZHANG Fan1, ZHANG Ning1, XUE Yanyan2, WANG Qingguo1, TANG Huili1, XU Xiaodong3, DONG Yongjun4, XU Jun1
Received:
2024-09-16
Online:
2024-11-15
Published:
2024-12-09
CLC Number:
REN Yongchun, LI Jianda, CAO Xiao, HUANG Yi, ZHANG Fan, ZHANG Ning, XUE Yanyan, WANG Qingguo, TANG Huili, XU Xiaodong, DONG Yongjun, XU Jun. Research Progress on High-Melting-Point Rare Earth Oxides Laser Crystals[J]. Journal of Synthetic Crystals, 2024, 53(11): 1829-1839.
[1] 赵绪尧. 2.79微米新型Er3+掺杂钪镓石榴石激光晶体生长及性能研究[D]. 合肥: 中国科学技术大学, 2020. ZHAO X Y. Growth and properties of 2.79 μm Er3+ doped scandium gallium garnet laser crystal[D]. Hefei: University of Science and Technology of China, 2020 (in Chinese). [2] 王冬梅. 掺铬锗酸盐激光晶体生长与性能研究[D]. 长春: 长春理工大学, 2022. WANG D M. Growth and properties of chromium-doped germanate laser crystals[D]. Changchun: Changchun University of Science and Technology, 2022 (in Chinese). [3] 梁洋洋. Er∶Lu2O3晶体 3 μm连续与脉冲激光特性研究[D]. 济南: 山东大学, 2022. LIANG Y Y. Continuous-wave and pulsed laser characterizations of Er∶Lu2O3 crystal at 3 μm [D]. Jinan: Shandong University, 2022 (in Chinese). [4] 张 振. Er3+掺杂CaF2/SrF2晶体局域结构、光谱与激光性能研究[D]. 上海: 中国科学院大学(中国科学院上海硅酸盐研究所), 2021. ZHANG Z. Study on local structure, spectra properties and laser performance of Er3+ doped CaF2/SrF2 crystals[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 2021 (in Chinese). [5] ZHOU S F, LI C Y, YANG G, et al. Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid[J]. Advanced Functional Materials, 2013, 23(43): 5436-5443. [6] GUO R Q, WANG F Y, WANG S X, et al. Exploration of the crystal growth and crystal-field effect of Yb3+ in orthorhombic GdScO3 and LaLuO3 crystals[J]. Crystal Growth & Design, 2023, 23(5): 3761-3768. [7] ALIMOV O, DOBRETSOVA E, GURYEV D, et al. Growth and characterization of neodymium-doped yttrium scandate crystal fiber with a bixbyite-type crystal structure[J]. Crystal Growth & Design, 2020, 20(7): 4593-4599. [8] KRÄNKEL C, UVAROVA A, GUGUSCHEV C, et al. Rare-earth doped mixed sesquioxides for ultrafast lasers[J]. Optical Materials Express, 2022, 12(3): 1074. [9] PETROV V, PETERMANN K, GRIEBNER U, et al. Continuous-wave and mode-locked lasers based on cubic sesquioxide crystalline hosts[C]//Laser Source and System Technology for Defense and Security II. Orlando (Kissimmee), FL. SPIE, 2006, 6216: 130-143. [10] YU J Q, CUI L, HE H Q, et al. Raman spectra of RE2O3 (RE=Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y): laser-excited luminescence and trace impurity analysis[J]. Journal of Rare Earths, 2014, 32(1): 1-4. [11] LI J D, HOU W T, XUE Y Y, et al. A new near-infrared broadband laser crystal: Cr3+ doped YScO3[J]. Journal of Luminescence, 2023, 257: 119710. [12] PENG F, LIU W P, LUO J Q, et al. Study of growth, defects and thermal and spectroscopic properties of Dy∶GdScO3 and Dy, Tb∶GdScO3 as promising 578 nm laser crystals[J]. CrystEngComm, 2018, 20(40): 6291-6299. [13] CHAIX-PLUCHERY O, KREISEL J. Raman scattering of perovskite DyScO3 and GdScO3 single crystals[J]. Journal of Physics: Condensed Matter, 2009, 21(17): 175901. [14] BROWN E E, FLEISCHMAN Z D, MCKAY J, et al. Spectroscopic characterization of low-phonon Er-doped BaF2 single crystal for mid-IR lasers[J]. Optical Materials Express, 2021, 11(2): 575. [15] BRUNN P VON, HEUER A, KRÄNKEL C. Rare-earth-doped sesquioxides for lasers in the mid-infrared spectral range[C]. Shaker Verlag: 2015 European Conference on Lasers and Electro-Optics-European Quantum Electronics Conference (Optica Publishing Group), 2015: CE_P_22. [16] UECKER R, WILKE H, SCHLOM D G, et al. Spiral formation during Czochralski growth of rare-earth scandates[J]. Journal of Crystal Growth, 2006, 295(1): 84-91. [17] 刘文宇. 掺镱倍半氧化物固溶体混晶的生长及其光谱展宽性能研究[D]. 济南: 山东大学, 2020. LIU W Y. Growth and spectral broadening properties of ytterbium-doped sesquioxide solid solution mixed crystals[D]. Jinan: Shandong University, 2020 (in Chinese). [18] 郭瑞琦. 新型掺镱倍半氧化物混晶的晶体场计算及光谱展宽机理研究[D]. 济南: 山东大学, 2023. GUO R Q. Crystal field calculation and spectral broadening mechanism of a new ytterbium-doped sesquioxide mixed crystal[D]. Jinan: Shandong University, 2023 (in Chinese). [19] HOU W T, XU Z A, ZHAO H Y, et al. Enhanced 2.7 μm continuous-wave emission of Er, Pr∶Lu2O3 crystal[J]. Journal of Luminescence, 2020, 224: 117094. [20] HOU W T, XU Z A, ZHAO H Y, et al. Spectroscopic analysis of Er∶Y2O3 crystal at 2.7 μm mid-IR laser[J]. Optical Materials, 2020, 107: 110017. [21] ZHANG N, YIN Y Q, ZHANG J, et al. Optimized growth of high length-to-diameter ratio Lu2O3 single crystal fibers by the LHPG method[J]. CrystEngComm, 2021, 23(7): 1657-1662. [22] ZHANG N, ZHOU H L, YIN Y R, et al. Exploring promising up-conversion luminescence single crystal fiber in sesquioxide family for high temperature optical thermometry application[J]. Journal of Alloys and Compounds, 2021, 889: 161348. [23] 赵衡煜, 侯文涛, 薛艳艳, 等. 高熔点稀土倍半氧化钪(Sc2O3)晶体的生长[J]. 人工晶体学报, 2021, 50(4): 732-734. ZHAO H Y, HOU W T, XUE Y Y, et al. Growth of high melting point rare earth sesquioxide scandium oxide crystal (Sc2O3)[J]. Journal of Synthetic Crystals, 2021, 50(4): 732-734 (in Chinese). [24] WANG G J, YIN Y R, ZHANG B T, et al. Record size crystal growth and laser performance of Yb-doped lutetium oxide (Yb∶Lu2O3) single crystal[J]. CrystEngComm, 2024, 26(4): 452-458. [25] PETERS V, BOLZ A, PETERMANN K, et al. Growth of high-melting sesquioxides by the heat exchanger method[J]. Journal of Crystal Growth, 2002, 237: 879-883. [26] LIU J, RICO M, GRIEBNER U, et al. Efficient room temperature continuous-wave operation of an Yb3+∶Sc2O3 crystal laser at 1041.6 and 1094.6 nm[J]. Physica Status Solidi (a), 2005, 202(3): R19-R21. [27] PETERS R, KRÄNKEL C, PETERMANN K, et al. Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb∶Lu2O3[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1934-1938. [28] KOOPMANN P, PETERS R, PETERMANN K, et al. Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm[J]. Applied Physics B, 2011, 102(1): 19-24. [29] LI T, BEIL K, KRÄNKEL C, et al. Efficient high-power continuous wave Er∶Lu2O3 laser at 285 μm[J]. Optics Letters, 2012, 37(13): 2568. [30] LIANG Y, LI T, ZHANG B, et al. 14.1 W continuous-wave dual-end diode-pumped Er∶Lu2O3 laser at 2.85 μm[J]. Chines Optics Letters, 2024, 22(1): 011403. [31] YIN Y R, WANG G J, JIA Z T, et al. Controllable and directional growth of Er∶Lu2O3 single crystals by the edge-defined film-fed technique[J]. CrystEngComm, 2020, 22(39): 6569-6573. [32] ZHANG M, YIN Y R, ZHANG L, et al. Self-Q-switched Er∶Lu2O3 laser at 2.74 μm[J]. Applied Optics, 2023, 62(6): 1462. [33] 李健达. 高熔点稀土氧化物晶体生长和超快激光特性研究[D]. 上海: 同济大学, 2024. LI J D. Study on crystal growth and ultrafast laser properties of high-melting-point rare earth oxides[D]. Shanghai: Tongji University, 2024 (in Chinese) [34] 李 晴, 王 俊, 马 杰, 等. 倍半氧化物激光陶瓷的研究进展[J]. 硅酸盐学报, 2024, 52(3): 1006-1022. LI Q, WANG J, MA J, et al. Research progress on sesquioxide laser ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 1006-1022 (in Chinese). [35] PETERS V, PETERMANN K, BOLZ A, et al. Ytterbium-doped sesquioxides as host materials for high-power laser applications[C]. Laser 2001-World of Photonics 15th International Conference on Lasers and Electrooptics in Europe, Technical Digest Series (Optica Publishing Group, 2001): HP40. [36] KONG J, TANG D Y, SHEN D Y, et al. Diode-pumped Yb∶Y2O3 ceramic laser[C]//High-Power Lasers and Applications II. Shanghai, China. SPIE, 2002, 4914: 74-81. [37] KONG J, LU J, TAKAICHI K, et al. Diode-pumped Yb∶Y2O3 ceramic laser[J]. Appl Phys Lett, 2003, 82(16): 2556-2558. [38] LU J, BISSON J F, TAKAICHI K, et al. Yb3+∶Sc2O3 ceramic laser[J]. Appl Phys Lett, 2003, 83(6): 1101-1103. [39] TAKAICHI K, YAGI H, SHIRAKAWA A, et al. Lu2O3∶Yb3+ ceramics-a novel gain material for high-power solid-state lasers[J]. Physica Status Solidi (a), 2005, 202(1): R1-R3. [40] KONG J, TANG D Y, ZHAO B, et al. 9.2 W diode-end-pumped Yb∶Y2O3 ceramic laser[J]. Appl Phys Lett, 2005, 86(16): 161116. [41] SANGHERA J, FRANTZ J, KIM W, et al. 10% Yb3+-Lu2O3 ceramic laser with 74% efficiency[J]. Optics Letters, 2011, 36(4): 576-578. [42] PETERS R, KRÄNKEL C, FREDRICH-THORNTON S T, et al. Thermal analysis and efficient high power continuous-wave andmode-locked thin disk laser operation of Yb-doped sesquioxides[J]. Applied Physics B, 2011, 102(3): 509-514. [43] WEICHELT B, WENTSCH K S, VOSS A, et al. A 670 W Yb∶Lu2O3 thin-disk laser[J]. Laser Physics Letters, 2012, 9(2): 110-115. [44] TOKURAKAWA M, SHIRAKAWA A, UEDA K I, et al. Continuous wave and mode-locked Yb3+∶Y2O3 ceramic thin disk laser[J]. Optics Express, 2012, 20(10): 10847-10852. [45] KITAJIMA S, NAKAO H, SHIRAKAWA A, et al. CW performance and temperature observation of Yb∶Lu2O3 ceramic thin-disk laser[C]//Laser Congress 2017 (ASSL, LAC). Nagoya, Aichi. Washington, D.C.: OSA, 2017. [46] DAVID S P, JAMBUNATHAN V, YUE F X, et al. Efficient diode pumped Yb∶Y2O3 cryogenic laser[J]. Applied Physics B, 2019, 125(7): 137. [47] LIU Z Y, TOCI G, PIRRI A, et al. Fabrication and laser operation of Yb∶Lu2O3 transparent ceramics from co-precipitated nano-powders[J]. Journal of the American Ceramic Society, 2019, 102(12): 7491-7499. [48] ESSER S, RÖHRER C, XU X D, et al. Ceramic Yb∶Lu2O3 thin-disk laser oscillator delivering an average power exceeding 1 kW in continuous-wave operation[J]. Optics Letters, 2021, 46(24): 6063-6066. [49] ESSER S, XU X D, WANG J, et al. Single-crystal and ceramic Yb∶Lu2O3 gain media for thin-disk oscillators[J]. Applied Physics B, 2023, 129(10): 160. [50] HÜLSHOFF L, UVAROVA A, GUGUSCHEV C, et al. Czochralski growth and laser operation of Er- and Yb-doped mixed sesquioxide crystals[C]//Laser Congress 2021 (ASSL, LAC). Washington, DC: Optica Publishing Group, 2021: ATh1A.2. [51] KALUSNIAK S, UVAROVA A, ARLT I, et al. Growth, characterization, and efficient laser operation of czochralski- and micro-pulling-down-grown Yb3+∶YScO3 mixed sesquioxides[J]. Optical Materials Express, 2024, 14(2): 304. [52] PARADIS C, MODSCHING N, WITTWER V J, et al. Generation of 35-fs pulses from a kerr lens mode-locked Yb∶Lu2O3 thin-disk laser[J]. Optics Express, 2017, 25(13): 14918-14925. [53] LIU L X, NIU S Y, LIANG Z Y, et al. Spectroscopy and kerr-lens mode-locked operation of Yb∶GdScO3 crystal[J]. Optics Express, 2024, 32(9): 16065-16074. [54] GUO J, LI S M, ZHAO C C, et al. SESAM mode-locked Yb∶GdScO3 laser[J]. Optics Express, 2024, 32(5): 7865-7872. [55] TOKURAKAWA M, SHIRAKAWA A, UEDA K I, et al. Diode-pumped sub-100 fs kerr-lens mode-locked Yb3+∶Sc2O3 ceramic laser[J]. Optics Letters, 2007, 32(23): 3382-3384. [56] TOKURAKAWA M, SHIRAKAWA A, UEDA K I, et al. Diode-pumped ultrashort-pulse generation based on Yb3+∶Sc2O3 and Yb3+∶Y2O3 ceramic multi-gain-media oscillator[J]. Optics Express, 2009, 17(5): 3353. [57] TOKURAKAWA M, SHIRAKAWA A, UEDA K, et al. Ultrashort pulse generation from diode pumped mode-locked Yb3+: sesquioxide single crystal lasers[J]. Optics Express, 2011, 19(4): 2904-2909. [58] SU X, WANG Y, YIN Y, et al. Sub-100-fs Kerr-lens mode-locked Yb∶Lu2O3 laser with more than 60% optical efficiency[J]. Optics Letters, 2024, 49: 145-148. [59] ZHAO Y G, WANG L, CHEN W D, et al. SESAM mode-locked Tm∶LuYO3 ceramic laser generating 54-fs pulses at 2048 nm[J]. Applied Optics, 2020, 59(33): 10493-10497. [60] ZHAO Y G, WANG L, WANG Y C, et al. SWCNT-SA mode-locked Tm∶LuYO3 ceramic laser delivering 8-optical-cycle pulses at 2.05 μm[J]. Optics Letters, 2020, 45(2): 459. [61] ZHAO Y G, WANG L, CHEN W D, et al. Kerr-lens mode-locked Tm-doped sesquioxide ceramic laser[J]. Optics Letters, 2021, 46(14): 3428-3431. [62] ZHANG N, LIU S D, WANG Z X, et al. SESAM mode-locked Tm∶Y2O3 ceramic laser[J]. Optics Express, 2022, 30(16): 29531-29538. [63] ZHANG N, SONG Q S, ZHOU J J, et al. 44-fs pulse generation at 2.05 μm from a SESAM mode-locked Tm∶GdScO3 laser[J]. Optics Letters, 2023, 48(2): 510-513. [64] SUZUKI A, KALUSNIAK S, GANSCHOW S, et al. Kerr-lens mode-locked 49-fs Tm3+∶YScO3 single-crystal laser at 2.1 μm[J]. Optics Letters, 2023, 48(16): 4221. [65] KOOPMANN P, LAMRINI S, SCHOLLE K, et al. Holmium-doped Lu2O3, Y2O3, and Sc2O3 for lasers above 2.1 μm[J]. Optics Express, 2013, 21(3): 3926-3931. [66] WANG F, TANG J W, LI E H, et al. Ho3+∶Y2O3 ceramic laser generated over 113 W of output power at 2117 nm[J]. Optics Letters, 2019, 44(24): 5933-5936. [67] LIU J, ZHANG N, SONG Q, et al. Tunable and mode-locked Tm,Ho∶GdScO3 laser[J]. Optics Letters, 2024, 49, 2145-2148. [68] ZHANG N, DING H, WANG Y, et al. Mode-locking of anisotropic Tm,Ho∶GdScO3 laser delivering 57-fs pulses at 2078 nm[J]. Opt Express, 2024, 32: 35194-35201. [69] 徐 军. 激光材料科学与技术前沿[M]. 上海: 上海交通大学出版社, 2007. XU J. Frontiers of Laser Material Science and Technology[M]. Shanghai: Shanghai Jiaotong University Press, 2007 (in Chinese). [70] 徐 军. 新型激光晶体材料及其应用[M]. 北京: 科学出版社, 2016. XU J. Novel laser crystal materials and their applications[M]. Beijing: Science Press, 2016 (in Chinese). [71] 沈德元, 范滇元. 中红外激光器[M]. 北京: 国防工业出版社, 2015. SHEN D Y, FAN D Y. Mid-infrared laser[M]. Beijing: National Defense Industry Press, 2015 (in Chinese). [72] SOROKINA I T, VODOPYANOV K L. Solid-state mid-infrared laser sources[M]. Berlin: Springer Science & Business Media, 2003. [73] GUAN X F, ZHAN L J, ZHU Z W, et al. Continuous-wave and chemical vapor deposition graphene-based passively Q-switched Er∶Y2O3 ceramic lasers at 27 μm[J]. Applied Optics, 2018, 57(3): 371. [74] GUAN X F, WANG J W, ZHANG Y Z, et al. Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er∶Y2O3 ceramic lasers[J]. Photonics Research, 2018, 6(9): 830. [75] 侯文涛. 铒离子掺杂激光晶体的生长与中红外波段光学性能研究[D]. 上海: 同济大学, 2023. HOU W T. Growth and optical properties of erbium-doped laser crystals in mid-infrared band[D]. Shanghai: Tongji University, 2023 (in Chinese). [76] ZONG M Y, HOU W T, ZHAO Y H, et al. 2.7 μm laser properties research of Er∶Y2O3 crystal[J]. Infrared Physics & Technology, 2022, 127: 104460. [77] HOU W, XUE X, QIN Z, et al. Efficient continuous wave and passively Q switched Er∶GdScO3 laser using Fe∶ZnSe at 2.8 μm[J]. Optics Letters, 2023, 48: 2118-2121. |
[1] | XU Wanli, GAN Yunhai, LI Yuewen, LI Bin, ZHENG Youdou, ZHANG Rong, XIU Xiangqian. High Rate HVPE Growth of High Uniformity 6-Inch GaN Thick Film [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 11-16. |
[2] | DOU Renqin, LIU Yao, LUO Jianqiao, WANG Xiaofei, LIU Wenpeng, ZHANG Qingli. Spectral Analysis and Thermal Properties of Nd∶GdYAG Laser Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1504-1511. |
[3] | SUN Yuanlong, HU Ziyu, ZHENG Guozong. Growth and Photoelectric Properties Characterization of Large-Sized CH3NH3PbBr3 Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1313-1318. |
[4] | MA Qisi, LIU Jianggao, SHE Weilin, CAO Cong, ZHANG Lichao, ZHAO Chao, FAN Yexia, ZHOU Zhenqi. Effect of Furnace Air Convection on the Temperature Field of Tellurium Zinc Cadmium Crystal Growth Based on CGSim Simulation [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1344-1351. |
[5] | LING Hao, XU Le, CHEN Sixian, TANG Yuanzhi, SUN Haibin, GUO Xue, FENG Yurun, HU Qiangqiang. Growth and Optical Properties of Large Size CsCu2I3 Single Crystal by Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1121-1126. |
[6] | YU Hang, ZHAO Qi, QI Xiaofang, MA Wencheng, XU Yongkuan, HU Zhanggui. Effect of Internal Radiation Heat Transfer on the Thermal Stress in Growing Ti∶Sapphire Crystal by Heat Exchanger Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1212-1221. |
[7] | AI Jiaxin, WAN Hongping, QIAN Junbing, WEI Hua. Influence of VGF Indium Phosphide Single Crystal Furnace Heater on the Thermal Field Distribution in the Furnace [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 781-791. |
[8] | XING Jiabin, LI Wei, JIA Songyan, MA Yali, LI Xue, ZHENG Qiang. Preparation of Highly Dispersed Nano Calcium Carbonate by Low-Temperature Carbonization Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 864-872. |
[9] | HUANG Changbao, HU Qianqian, ZHU Zhicheng, LI Ya, MAO Changyu, XU Junjie, WU Haixin, NI Youbao. Growth and Device Fabrication of Mid to Far-Infrared Cr2+/Fe2+∶CdSe Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 551-553. |
[10] | QIN Feng, WU Jinjie, DENG Ningqin, JIAO Zhiwei, ZHU Weifeng, TANG Xianqiang, ZHAO Rui. Research Progress for Lead Halide Perovskite Direct Radiation Detector Based on the Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 554-571. |
[11] | CAO Cong, LIU Jianggao, FAN Yexia, LI Zhenxing, ZHOU Zhenqi, MA Qisi, NIU Jiajia. Relationship Between Temperature Gradient and Interfacial Shape Stability of CZT Crystal Growth [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 641-648. |
[12] | ZHAO Wenhai, TAO Shixu, TONG Siyi, TANG Jian, ZUO Chuandong, CAO Yongge, MA Chaoyang. Research Progress on Lu2O3 Based Laser Transparent Ceramics [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(12): 2043-2058. |
[13] | WANG Kunyuan, LIANG Xiaoyan, MIN Jiahua, ZHANG Jijun. Effect of In-Situ Heating Treatment on the Quality and Properties of CdZnTe Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(12): 2079-2084. |
[14] | LI Dongmei, ZHOU Jun, WU Feifan, LYU Jiabo, XIAO Li, GONG Hengxiang. Effect of Electrostatic Field on the Preparation of TiO2 Thin Films by Ultrasonic Atomised Pyrolytic Spraying [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(12): 2173-2180. |
[15] | ZHANG Zhiheng, HOU Wentao, LIU Jian, LI Dongzhen, XUE Yanyan, WANG Qingguo, LYU Shasha, XU Xiaodong, XU Jun. Spectral and Laser Properties of Er3+-Doped CaYAlO4 Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(11): 1868-1876. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||