JOURNAL OF SYNTHETIC CRYSTALS ›› 2024, Vol. 53 ›› Issue (11): 1840-1867.
Special Issue: 高功率激光用晶体和透明陶瓷
Previous Articles Next Articles
JI Haohao1, CHEN Nianjiang2, ZHANG Jian1,3, YANG Yuhan4, LIU Yu4, WANG Shiwei1,3
Received:
2024-09-15
Online:
2024-11-15
Published:
2024-12-09
CLC Number:
JI Haohao, CHEN Nianjiang, ZHANG Jian, YANG Yuhan, LIU Yu, WANG Shiwei. Research Progress of 3D Printing Yttrium Aluminum Garnet-Based Laser Ceramics[J]. Journal of Synthetic Crystals, 2024, 53(11): 1840-1867.
[1] QIN L, HUANG Y Q, XIA F, et al. 5 nm nanogap electrodes and arrays by super-resolution laser lithography[J]. Nano Letters, 2020, 20(7): 4916-4923. [2] SANKEY E W, GRABOWSKI M M, SRINIVASAN E S, et al. Time to steroid independence after laser interstitial thermal therapy vs medical management for treatment of biopsy-proven radiation necrosis secondary to stereotactic radiosurgery for brain metastasis[J]. Neurosurgery, 2022, 90(6): 684-690. [3] WANG S F, ZHANG J, LUO D W, et al. Transparent ceramics: processing, materials and applications[J]. Progress in Solid State Chemistry, 2013, 41(1/2): 20-54. [4] GOLDSTEIN A, KRELL A. Transparent ceramics at 50: progress made and further prospects[J]. Journal of the American Ceramic Society, 2016, 99(10): 3173-3197. [5] LUPEI V, LUPEI A. Nd∶YAG at its 50th anniversary: still to learn[J]. Journal of Luminescence, 2016, 169: 426-439. [6] IKESUE A, AUNG Y L. Ceramic laser materials[J]. Nature Photonics, 2008, 2(12): 721-727. [7] SANGHERA J, KIM W, VILLALOBOS G, et al. Ceramic laser materials: past and present[J]. Optical Materials, 2013, 35(4): 693-699. [8] IKESUE A, KINOSHITA T, KAMATA K, et al. Fabrication and optical properties of high-performance polycrystalline Nd∶YAG ceramics for solid-state lasers[J]. Journal of the American Ceramic Society, 1995, 78(4): 1033-1040. [9] MANDL A, KLIMEK D E. Textron’s J-HPSSL 100 kW thinzag® laser program[C]//Conference on Lasers and Electro-Optics 2010. San Jose, California. Washington, D.C.: OSA, 2010: JThH. [10] MANGIR M, ROCKWELL D. Measurements of heating and energy storage in flashlamp-pumped Nd∶YAG and Nd-doped phosphate laser glasses[J]. IEEE Journal of Quantum Electronics, 1986, 22(4): 574-580. [11] MACDONALD M P, GRAF T, BALMER J E, et al. Reducing thermal lensing in diode-pumped laser rods[J]. Optics Communications, 2000, 178(4/5/6): 383-393. [12] KOECHNER W. Thermal lensing in a Nd∶YAG laser rod[J]. Applied Optics, 1970, 9(11): 2548-2553. [13] CHEN Y, CHEN B, PATEL M K R, et al. Calculation of thermal-gradient-induced stress birefringence in slab lasers-I[J]. IEEE Journal of Quantum Electronics, 2004, 40(7): 909-916. [14] MARTIN W S, CHERNOCH J P. Multiple internal reflection face-pumped laser: US3633126[P]. 1972-01-04. [15] 齐恩宇. 传导冷却端面泵浦板条式激光器谐振腔技术研究[D]. 长沙: 国防科学技术大学, 2009. QI E Y. Study on resonator technology of conduction cooling end-pumped slab laser[D]. Changsha: National University of Defense Technology, 2009 (in Chinese). [16] GIESEN A, HÜGEL H, VOSS A, et al. Scalable concept for diode-pumped high-power solid-state lasers[J]. Applied Physics B, 1994, 58(5): 365-372. [17] LU J R, UEDA K I, YAGI H, et al. Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials[J]. Journal of Alloys and Compounds, 2002, 341(1/2): 220-225. [18] HOSTAŠA J, PIANCASTELLI A, TOCI G, et al. Transparent layered YAG ceramics with structured Yb doping produced via tape casting[J]. Optical Materials, 2017, 65: 21-27. [19] YOSHIDA K, ISHII H, KUMADA T, et al. All-ceramic composite with layer-by-layer structure by advanced ceramic technology[C]//Laser-Induced Damage in Optical Materials: 2004. Boulder, CO. SPIE, 2005, 5647: 247-254. [20] 刘 洋, 唐晓军, 王 喆, 等. 激光二极管端面抽运Nd∶YAG表层增益板条激光器[J]. 中国激光, 2016, 43(10): 1001004. LIU Y, TANG X J, WANG Z, et al. Laser diode end pumped Nd∶YAG surface gain slab lasers[J]. Chinese Journal of Lasers, 2016, 43(10): 1001004 (in Chinese). [21] GRIVAS C. Optically pumped planar waveguide lasers, part I: fundamentals and fabrication techniques[J]. Progress in Quantum Electronics, 2011, 35(6): 159-239. [22] IKESUE A, AUNG Y L, KAMIMURA T, et al. Composite laser ceramics by advanced bonding technology[J]. Materials, 2018, 11(2): 271. [23] FURUSE H, KAWANAKA J, TAKESHITA K, et al. Total-reflection active-mirror laser with cryogenic Yb∶YAG ceramics[J]. Optics Letters, 2009, 34(21): 3439-3441. [24] FURUSE H, KAWANAKA J, MIYANAGA N, et al. Zig-zag active-mirror laser with cryogenic Yb3+∶YAG/YAG composite ceramics[J]. Optics Express, 2011, 19(3): 2448-2455. [25] IKESUE A, AUNG Y L. Synthesis and performance of advanced ceramic lasers[C]//2007 Conference on Lasers and Electro-Optics (CLEO). May 6-11, 2007, Baltimore, MD, USA. IEEE, 2007: 1-2. [26] LI M, HU H, GAO Q S, et al. A 7.08-kW YAG/Nd∶YAG/YAG composite ceramic slab laser with dual concentration doping[J]. IEEE Photonics Journal, 2017, 9(4): 1504010. [27] HOWATT G N, BRECKENRIDGE R G, BROWNLOW J M. Fabrication of thin ceramic sheets for capacitors[J]. Journal of the American Ceramic Society, 1947, 30(8): 237-242. [28] GE L, LI J, ZHOU Z W, et al. Fabrication of composite YAG/Nd∶YAG/YAG transparent ceramics for planar waveguide laser[J]. Optical Materials Express, 2014, 4(5): 1042. [29] GE L, LI J, QU H Y, et al. Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd∶YAG/YAG ceramics[J]. Optical Materials, 2016, 60: 221-229. [30] KUPP E R, MESSING G L, ANDERSON J M, et al. Co-casting and optical characteristics of transparent segmented composite Er∶YAG laser ceramics[J]. Journal of Materials Research, 2010, 25(3): 476-483. [31] TER-GABRIELYAN N, MERKLE L D, KUPP E R, et al. Efficient resonantly pumped tape cast composite ceramic Er∶YAG laser at 1645 nm[J]. Optics Letters, 2010, 35(7): 922-924. [32] KOKKINIS D, SCHAFFNER M, STUDART A R. Multimaterial magnetically assisted 3D printing of composite materials[J]. Nature Communications, 2015, 6: 8643. [33] OBER T J, FORESTI D, LEWIS J A. Active mixing of complex fluids at the microscale[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(40): 12293-12298. [34] ORTEGA J M, GOLOBIC M, SAIN J D, et al. Active mixing of disparate inks for multimaterial 3D printing[J]. Advanced Materials Technologies, 2019, 4(7): 1800717. [35] LI W B, ARMANI A, MARTIN A, et al. Extrusion-based additive manufacturing of functionally graded ceramics[J]. Journal of the European Ceramic Society, 2021, 41(3): 2049-2057. [36] JONES I K, SEELEY Z M, CHEREPY N J, et al. Direct ink write fabrication of transparent ceramic gain media[J]. Optical Materials, 2018, 75: 19-25. [37] SEELEY Z M, RUDZIK T J, PHILLIPS I R, et al. Additive manufacturing of transparent ceramic laser gain media-rods, thin disks, and planar waveguides[C]//Laser Congress 2020 (ASSL, LAC). Washington, D.C.: Optica Publishing Group, 2020: AW1A.1. [38] ZELMON D E, SCHEPLER K L, GUHA S, et al. Optical properties of Nd-doped ceramic yttrium aluminum garnet[C]//Laser-Induced Damage in Optical Materials: 2004. Boulder, CO. SPIE, 2005, 5647: 255-264. [39] MU X D, MEISSNER H, LEE H C, et al. True crystalline fibers: double-clad LMA design concept of Tm∶YAG-core fiber and its mode simulation[C]//Fiber Lasers IX: Technology, Systems, and Applications. San Francisco, California, USA. SPIE, 2012: 8237. [40] SEELEY Z, YEE T, CHEREPY N, et al. 3D printed transparent ceramic YAG laser rods: matching the core-clad refractive index[J]. Optical Materials, 2020, 107: 110121. [41] ZHANG G R, CARLONI D, WU Y Q. 3D printing of transparent YAG ceramics using copolymer-assisted slurry[J]. Ceramics International, 2020, 46(10): 17130-17134. [42] YANG Y, SHIMAI S, WANG S W. Room-temperature gelcasting of alumina with a water-soluble copolymer[J]. Journal of Materials Research, 2013, 28(11): 1512-1516. [43] SUN Y, SHIMAI S, PENG X, et al. A method for gelcasting high-strength alumina ceramics with low shrinkage[J]. Journal of Materials Research, 2014, 29(2): 247-251. [44] CHEN H, SHIMAI S, ZHAO J, et al. Hydrophobic coagulation of alumina slurries[J]. Journal of the American Ceramic Society, 2021, 104(1): 284-293. [45] OSBORNE R A, WINEGER T J, et al. Fabrication of engineered dopant profiles in Er/Lu∶YAG transparent laser ceramics via additive manufacturing[J]. Optical Materials Express, 2023, 13(2): 526. [46] SCHWENTENWEIN M, HOMA J. Additive manufacturing of dense alumina ceramics[J]. International Journal of Applied Ceramic Technology, 2015, 12(1): 1-7. [47] BIAN W G, LI D C, LIAN Q, et al. Fabrication of a bio-inspired beta-tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering[J]. Rapid Prototyping Journal, 2012, 18(1): 68-80. [48] CHEN Z, LI D, ZHOU W, et al. Curing characteristics of ceramic stereolithography for an aqueous-based silica suspension[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2010, 224(4): 641-651. [49] CHU T M G, ORTON D G, HOLLISTER S J, et al. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures[J]. Biomaterials, 2002, 23(5): 1283-1293. [50] CHARTIER T, DUTERTE C, DELHOTE N, et al. Fabrication of millimeter wave components via ceramic stereo- and microstereolithography processes[J]. Journal of the American Ceramic Society, 2008, 91(8): 2469-2474. [51] HOSTAŠA J, SCHWENTENWEIN M, TOCI G, et al. Transparent laser ceramics by stereolithography[J]. Scripta Materialia, 2020, 187: 194-196. [52] ZHANG G R, WU Y Q. Three-dimensional printing of transparent ceramics by lithography-based digital projection[J]. Additive Manufacturing, 2021, 47: 102271. [53] SHEN Y R, SUN Y, JIN B C, et al. Effect of debinding and sintering profile on the optical properties of DLP-3D printed YAG transparent ceramic[J]. Ceramics International, 2022, 48(15): 21134-21140. [54] 胡 松, 唐雨馨, 周国红, 等. 光固化3D打印钇铝石榴石透明陶瓷及其微结构调控[J]. 硅酸盐学报, 2024, 52(3): 882-889. HU S, TANG Y X, ZHOU G H, et al. Digital light processing 3D printing of Y3Al5O12 transparent ceramics and microstructure regulation[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 882-889 (in Chinese). [55] SEELEY Z M, PHILLIPS I R, RUDZIK T J, et al. Material jet printing of transparent ceramic Yb∶YAG planar waveguides[J]. Optics Letters, 2021, 46(10): 2433-2436. [56] BROWN C T A, BONNER C L, WARBURTON T J, et al. Thermally bonded planar waveguide lasers[J]. Applied Physics Letters, 1997, 71(9): 1139-1141. [57] ZHOU B B, WEI Z Y, ZOU Y W, et al. High-efficiency diode-pumped femtosecond Yb∶YAG ceramic laser[J]. Optics Letters, 2010, 35(3): 288-290. [58] WANG J T, WU Z H, SU H, et al. 1.5 kW efficient CW Nd∶YAG planar waveguide MOPA laser[J]. Optics Letters, 2017, 42(16): 3149-3152. [59] DYBOWSKA-SARAPUK L, KIELBASINSKI K, ARAZNA A, et al. Efficient inkjet printing of graphene-based elements: influence of dispersing agent on ink viscosity[J]. Nanomaterials, 2018, 8(8): 602. [60] MCKINLEY, RENARDY. Wolfgang von ohnesorge[J]. Physics of Fluids, 2011, 23(12): 127101-1-127101-6. [61] JUNG R, TÜMMLER J, NUBBEMEYER T, et al. Thin-disk ring amplifier for high pulse energy[J]. Optics Express, 2016, 24(5): 4375-4381. [62] HERKOMMER C, KRÖTZ P, JUNG R, et al. Ultrafast thin-disk multipass amplifier with 720 mJ operating at kilohertz repetition rate for applications in atmospheric research[J]. Optics Express, 2020, 28(20): 30164. [63] ZAPATA L E. Cryogenic composite disk laser for peak and average power scaling[C]//CLEO: 2014. San Jose, California. Washington, D.C.: OSA, 2014: SM1F.1. [64] KUZNETSOV I, MUKHIN I, PALASHOV O. High-power thin-disk laser with composite Yb∶YAG/YAG active element[C]//2014 International Conference Laser Optics. June 30 - July 4, 2014, St. Petersburg, Russia. IEEE, 2014: 1. [65] RUDZIK T J, SEELEY Z M, DROBSHOFF A D, et al. Additively manufactured transparent ceramic thin disk gain medium[J]. Optical Materials Express, 2022, 12(9): 3648. [66] KAWATA S, SUN H B, TANAKA T, et al. Finer features for functional microdevices-micromachines can be created with higher resolution using two-photon absorption. [J]. Nature, 2001, 412(6848): 697-698. [67] TUMBLESTON J R, SHIRVANYANTS D, ERMOSHKIN N, et al. Continuous liquid interface production of 3D objects[J]. Science, 2015, 347(6228): 1349-1352. [68] OTUKA A J G, TOMAZIO N B, PAULA K T, et al. Two-photon polymerization: functionalized microstructures, micro-resonators, and bio-scaffolds[J]. Polymers, 2021, 13(12): 1994. [69] BARNER-KOWOLLIK C, BASTMEYER M, BLASCO E, et al. 3D laser micro- and nanoprinting: challenges for chemistry[J]. Angewandte Chemie International Edition, 2017, 56(50): 15828-15845. [70] COOPERSTEIN I, INDUKURI S R K C, BOUKETOV A, et al. 3D printing of micrometer-sized transparent ceramics with on-demand optical-gain properties[J]. Advanced Materials, 2020, 32(28): e2001675. [71] GUO X Z, LI W Y, NAKANISHI K, et al. Preparation of mullite monoliths with well-defined macropores and mesostructured skeletons via the Sol-gel process accompanied by phase separation[J]. Journal of the European Ceramic Society, 2013, 33(10): 1967-1974. [72] TOKUDOME Y, FUJITA K, NAKANISHI K, et al. Sol-gel synthesis of macroporous YAG from ionic precursors via phase separation route[J]. Journal of the Ceramic Society of Japan, 2007, 115(1348): 925-928. [73] POKHREL M, RAY N, KUMAR G A, et al. Comparative studies of the spectroscopic properties of Nd3+∶YAG nanocrystals, transparent ceramic and single crystal[J]. Optical Materials Express, 2012, 2(3): 235. [74] KOTZ F, QUICK A S, RISCH P, et al. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures[J]. Advanced Materials, 2021, 33(9): 2006341. [75] YANG J, YIN T L, XU W M, et al. Reproductive outcome of septate uterus after hysteroscopic treatment with neodymium: YAG laser[J]. Photomedicine and Laser Surgery, 2006, 24(5): 625. [76] LIU L Y, WANG W B, FENG S, et al. Rapid, micron-resolution 3D printing of Nd∶YAG ceramic with optical gain[J]. Small, 2024, 20(36): 2403130. [77] LIU L Y, LIU S Y, SCHELP M, et al. Rapid 3D printing of bioinspired hybrid structures for high-efficiency fog collection and water transportation[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 29122-29129. [78] SHAO G B, HAI R H, SUN C. 3D printing customized optical lens in minutes[J]. Advanced Optical Materials, 2020, 8(4): 1901646. [79] WAN Y S, KWONG J, BRANDES H G, et al. Influence of amorphous clay-size materials on soil plasticity and shrink-swell behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(12): 1026-1031. [80] CHAN S S L, PENNINGS R M, EDWARDS L, et al. 3D printing of clay for decorative architectural applications: effect of solids volume fraction on rheology and printability[J]. Additive Manufacturing, 2020, 35: 101335. [81] KHAN A U, BRISCOE B J, LUCKHAM P F. Evaluation of slip in capillary extrusion of ceramic pastes[J]. Journal of the European Ceramic Society, 2001, 21(4): 483-491. [82] THIBAUT C, DENNEULIN A, ROLLAND DU ROSCOAT S, et al. A fibrous cellulose paste formulation to manufacture structural parts using 3D printing by extrusion[J]. Carbohydrate Polymers, 2019, 212: 119-128. [83] SUN Y H, PENG C Q, WANG X F, et al. Rheological behavior of Al2O3 suspensions containing polyelectrolyte complexes for direct ink writing[J]. Powder Technology, 2017, 320: 223-229. [84] SUN Y H, PENG C Q, WANG X F, et al. Phase behavior of polyelectrolyte complexes and rheological behavior of alumina suspensions for direct ink writing[J]. Journal of the American Ceramic Society, 2016, 99(6): 1902-1910. [85] CAI J, LV A, ZHOU J P, et al. Cellulose science and materials [M]. Beijing: Chemical Industry Press, 2015. [86] JI H H, ZHAO J, CHEN J, et al. Direct ink writing of cellulose-plasticized aqueous ceramic slurry for YAG transparent ceramics[J]. MRS Communications, 2022, 12(2): 206-212. [87] YUE Z L, LIU X, COATES P T, et al. Advances in printing biomaterials and living cells: implications for islet cell transplantation[J]. Current Opinion in Organ Transplantation, 2016, 21(5): 467-475. [88] DONDERWINKEL I, VAN HEST J C M, CAMERON N R. Bio-inks for 3D bioprinting: recent advances and future prospects[J]. Polymer Chemistry, 2017, 8(31): 4451-4471. [89] SEOL Y J, KANG H W, LEE S J, et al. Bioprinting technology and its applications[J]. European Journal of Cardio-Thoracic Surgery, 2014, 46(3): 342-348. [90] SMAY J E, CESARANO J, LEWIS J A. Colloidal inks for directed assembly of 3-D periodic structures[J]. Langmuir, 2002, 18(14): 5429-5437. [91] CORKER A, NG H C H, POOLE R J, et al. 3D printing with 2D colloids: designing rheology protocols to predict ‘printability’ of soft-materials[J]. Soft Matter, 2019, 15(6): 1444-1456. [92] M’BARKI A, BOCQUET L, STEVENSON A. Linking rheology and printability for dense and strong ceramics by direct ink writing[J]. Scientific Reports, 2017, 7(1): 6017. [93] MINAS C, CARNELLI D, TERVOORT E, et al. 3D printing of emulsions and foams into hierarchical porous ceramics[J]. Advanced Materials, 2016, 28(45): 9993-9999. [94] JI H H, ZHAO J, CHEN J, et al. A novel experimental approach to quantitatively evaluate the printability of inks in 3D printing using two criteria[J]. Additive Manufacturing, 2022, 55: 102846. [95] PELZ J S, KU N, SHOULDERS W T, et al. Multi-material additive manufacturing of functionally graded carbide ceramics via active, in-line mixing[J]. Additive Manufacturing, 2021, 37: 101647. [96] XIE M M, JI H H, WANG D W, et al. 3D printing of gradient-doped Yb∶YAG laser ceramics by leveraging active mixing[J]. Additive Manufacturing Frontiers, 2024, 3(1): 200118. [97] CHEN J, JI H H, ZHANG J, et al. Fabrication of YAG ceramic tube by UV-assisted direct ink writing[J]. Ceramics International, 2022, 48(14): 19703-19708. [98] WANG H R, GAO W L, ZHANG J. Inkjet printing of Yb∶YAG transparent ceramic planar waveguide laser gain medium [J]. Advanced Photonics Research, 2024, 5(8): 2300320. |
[1] | LEI Shasha, GONG Qiaorui, ZHAO Chengchun, SUN Xiaohui, HANG Yin. Research Progress of Wide Bandgap Semiconductor ZnGa2O4 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1289-1301. |
[2] | ZHAO Wenhai, TAO Shixu, TONG Siyi, TANG Jian, ZUO Chuandong, CAO Yongge, MA Chaoyang. Research Progress on Lu2O3 Based Laser Transparent Ceramics [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(12): 2043-2058. |
[3] | BAI Yuchen, ZHANG Junyu, ZHAO Hongyang, ZHAO Jin, ZHANG Jian, WANG Shiwei. Effect of ZrO2 on the Densification and Optical Properties of Ho∶(Y0.7Sc0.3)2O3 Laser Ceramics [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(6): 1016-1022. |
[4] | LUO Yongzhi, YU Shengquan, YIN Ming, KANG Bin. Research Progress on Transition Metal Ions Doped Ⅱ-Ⅵ Group Mid-Infrared Laser Ceramics [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(5): 947-958. |
[5] | ZHANG Hanhong, YE Shuai, ZHANG Fan. Research Progress on Synthesis of Perovskite Single Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(12): 2389-2397. |
[6] | ZHUANG Wenchang, ZHANG Jie, LI Qintang, ZHU Wenyou, JIA Zhitai. Research Progress on Preparation of Gallium Oxide Nanomaterials and Its Application in Photoelectric Detection [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(12): 2376-2382. |
[7] | CHENG Hong-fei;SUN Yi-gao;AN Shuai;QIAO Jun-jie. Progress on Synthesis and Application of Hydroxyapatite [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(9): 1740-1747. |
[8] | YU Jian-yuan;WANG Li-kun;WANG Li;SONG Yu-jia;ZHAO Hong-li. Research Development on Preparation of FTO Thin Film [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2016, 45(11): 2645-2649. |
[9] | FENG Yin;WU Qi-bai;ZHANG Hai-yan;XIE Zhong-xiang;HUANG Ying-xin. Study on Fabrication of Pure Yttrium Aluminum Garnet Nano-powder by Chemical Coprecipitation Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2015, 44(2): 380-383. |
[10] | LIU Jiang-bo;WANG Zhou-fu;WANG Xi-tang;LIU Hao;MA Yan. Study on Preparation of MA-YAG Composites [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2015, 44(11): 3219-3222. |
[11] | LIU Jing-ming;TANG Wei-zhong;LU Fan-xiu. Oxidative Degradation of High Quality CVD Diamond [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2001, 30(2): 167-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||