Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (9): 1642-1653.DOI: 10.16553/j.cnki.issn1000-985x.2025.0063
• Research Articles • Previous Articles Next Articles
CHEN Wentao1(
), ZHUANG Xingyi2, AN Hangyi1, LAI Zhongjie1, WANG Airong1, LUO Yani1(
), SHI Zhongfeng1, LI Jiaming1(
)
Received:2025-03-27
Online:2025-09-20
Published:2025-09-23
Contact:
LUO Yani, LI Jiaming
CLC Number:
CHEN Wentao, ZHUANG Xingyi, AN Hangyi, LAI Zhongjie, WANG Airong, LUO Yani, SHI Zhongfeng, LI Jiaming. Synthesis, Crystal Structure, and Fluorescence Sensing Property in Water by a Two-Dimensional Cobalt Metal-Organic Framework[J]. Journal of Synthetic Crystals, 2025, 54(9): 1642-1653.
| Complex | {[Co(IPA)(TIB)]·2H2O} n |
|---|---|
| Empirical formula | C23H20CoN6O6 |
| Formula weight | 535.38 |
| T/K | 298.15 |
| Crystal system | Monoclinic |
| Crystal size | 0.520 mm×0.240 mm×0.120 mm |
| Space-group | P21/c |
| a/nm | 0.964 28(7) |
| b/nm | 1.282 98(10) |
| c/nm | 1.783 32(14) |
| α/(°) | 90 |
| β/(°) | 90.001(1) |
| γ/(°) | 90 |
| V/nm3 | 2.206 2(3) |
| Z | 4 |
| ρcalc/(g·cm-3) | 1.612 |
| μ/mm-1 | 0.834 |
| F(000) | 1 100.0 |
| 2θ range for data collection/(°) | 4.568 to 50.054 |
| Index ranges | -10≤h≤11, -14≤k≤15, -13≤l≤21 |
| Reflections collected | 6 943 |
| Independent reflections, Rint, Rsigma | 3 797,0.030 8,0.048 3 |
| Data/restraints/parameters | 3 797/0/307 |
| Goodness-of-fit on F2 | 1.035 |
| R1, wR2 [I≥2σ(I)] | 0.041 7, 0.111 1 |
| R1, wR2 [all data] | 0.056 2, 0.121 9 |
| CCDC/ICSD | 2434500 |
Table 1 Crystallographic data parameters of Co-MOF
| Complex | {[Co(IPA)(TIB)]·2H2O} n |
|---|---|
| Empirical formula | C23H20CoN6O6 |
| Formula weight | 535.38 |
| T/K | 298.15 |
| Crystal system | Monoclinic |
| Crystal size | 0.520 mm×0.240 mm×0.120 mm |
| Space-group | P21/c |
| a/nm | 0.964 28(7) |
| b/nm | 1.282 98(10) |
| c/nm | 1.783 32(14) |
| α/(°) | 90 |
| β/(°) | 90.001(1) |
| γ/(°) | 90 |
| V/nm3 | 2.206 2(3) |
| Z | 4 |
| ρcalc/(g·cm-3) | 1.612 |
| μ/mm-1 | 0.834 |
| F(000) | 1 100.0 |
| 2θ range for data collection/(°) | 4.568 to 50.054 |
| Index ranges | -10≤h≤11, -14≤k≤15, -13≤l≤21 |
| Reflections collected | 6 943 |
| Independent reflections, Rint, Rsigma | 3 797,0.030 8,0.048 3 |
| Data/restraints/parameters | 3 797/0/307 |
| Goodness-of-fit on F2 | 1.035 |
| R1, wR2 [I≥2σ(I)] | 0.041 7, 0.111 1 |
| R1, wR2 [all data] | 0.056 2, 0.121 9 |
| CCDC/ICSD | 2434500 |
| Bond | Length/nm | Bond | Angle/(°) |
|---|---|---|---|
| Co1—N6 | 0.201 5(3) | N6—Co1—O2 | 109.81(10) |
| Co1—O2 | 0.195 0(2) | N1ⅱ—Co1—O2 | 117.01(11) |
| Co1—N1ⅱ | 0.203 0(3) | O3i—Co1—O2 | 119.10(9) |
| Co1—O3i | 0.197 6(2) | O3i—Co1—N6 | 107.23(10) |
| Co1ⅳ—N1 | 0.203 0(3) | O3i—Co1—N1ⅱ | 96.38(10) |
| Co1ⅲ—O3 | 0.197 6(2) | N1ⅱ—Co1—N6 | 105.86(10) |
Table 2 Selected bond lengths and bond angles of Co-MOF
| Bond | Length/nm | Bond | Angle/(°) |
|---|---|---|---|
| Co1—N6 | 0.201 5(3) | N6—Co1—O2 | 109.81(10) |
| Co1—O2 | 0.195 0(2) | N1ⅱ—Co1—O2 | 117.01(11) |
| Co1—N1ⅱ | 0.203 0(3) | O3i—Co1—O2 | 119.10(9) |
| Co1—O3i | 0.197 6(2) | O3i—Co1—N6 | 107.23(10) |
| Co1ⅳ—N1 | 0.203 0(3) | O3i—Co1—N1ⅱ | 96.38(10) |
| Co1ⅲ—O3 | 0.197 6(2) | N1ⅱ—Co1—N6 | 105.86(10) |
| Bond | d(D—H)/nm | d(H…A)/nm | d(D…A)/nm | Angle/(°) |
|---|---|---|---|---|
| C3—H3…O4ⅷ | 0.093 | 0.242 | 0.313 3(5) | 134 |
| C20—H20…O1ⅹ | 0.093 | 0.243 | 0.325 5(5) | 148 |
| C13—H13…N4ⅰ | 0.093 | 0.254 | 0.344 2(4) | 163 |
Table 3 Hydrogen bonds lengths and bond angles of Co-MOF
| Bond | d(D—H)/nm | d(H…A)/nm | d(D…A)/nm | Angle/(°) |
|---|---|---|---|---|
| C3—H3…O4ⅷ | 0.093 | 0.242 | 0.313 3(5) | 134 |
| C20—H20…O1ⅹ | 0.093 | 0.243 | 0.325 5(5) | 148 |
| C13—H13…N4ⅰ | 0.093 | 0.254 | 0.344 2(4) | 163 |
Fig.3 Stacking diagram of the complex. (a) 2D planar structure; (b) offset face-to-face π—π stacking interactions (symmetry codes: (v) -x, -0.5+y, 0.5-z; (vi) -x, -y, 1-z); (c) 3D diagram of π—π stacking
Fig.7 Fluorescence spectra of Co-MOF suspension changing with Cr2O72- concentration and the fluorescence quenching linearity relationship at low concentration
Fig.8 Fluorescence spectra of Co-MOF suspension changing with CrO42- concentration and the fluorescence quenching linearity relationship at low concentration
Fig.9 Fluorescence spectra of Co-MOF suspension changing with S2O82- concentration and the fluorescence quenching linearity relationship at low concentration
Fig.10 Fluorescence spectra of Co-MOF suspension changing with Fe3+ concentration and the fluorescence quenching linearity relationship at low concentration
| [1] | ZHONG F Y, LI C Q, XIE Y B, et al. Titanium metal-organic framework nanorods for highly sensitive nitroaromatic explosives detection and nanomolar sensing of Fe3+ [J]. Journal of Solid State Chemistry, 2019, 278: 120892. |
| [2] | HE T, ZHANG Y Z, KONG X J, et al. Zr(Ⅳ)-based metal-organic framework with T-shaped ligand: unique structure, high stability, selective detection, and rapid adsorption of Cr2O7 2- in water[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16650-16659. |
| [3] | YAO Z Q, LI G Y, XU J, et al. A water-stable luminescent ZnII metal-organic framework as chemosensor for high-efficiency detection of CrVI-anions (Cr2O7 2- and CrO4 2-) in aqueous solution[J]. Chemistry-A European Journal, 2018, 24(13): 3192-3198. |
| [4] | HOUSE D A. Kinetics and mechanism of oxidations by peroxydisulfate[J]. Chemical Reviews, 1962, 62(3): 185-203. |
| [5] |
KIM Y W, LEE S M, SHIN S M, et al. Efficacy of sauchinone as a novel AMPK-activating lignan for preventing iron-induced oxidative stress and liver injury[J]. Free Radical Biology and Medicine, 2009, 47(7): 1082-1092.
DOI PMID |
| [6] | ZHENG Y, QIAO S Z. Metal-organic framework assisted synthesis of single-atom catalysts for energy applications[J]. National Science Review, 2018, 5(5): 626-627. |
| [7] | DU Y, YANG H Y, LIU R J, et al. A multi-responsive chemosensor for highly sensitive and selective detection of Fe3+, Cu2+, Cr2O7 2- and nitrobenzene based on a luminescent lanthanide metal-organic framework[J]. Dalton Transactions, 2020, 49(37): 13003-13016. |
| [8] | FABREGAT-CABELLO N, RODRÍGUEZ-GONZÁLEZ P, CASTILLO Á, et al. Fast and accurate procedure for the determination of Cr(Ⅵ) in solid samples by isotope dilution mass spectrometry[J]. Environmental Science & Technology, 2012, 46(22): 12542-12549. |
| [9] | DRINČIĆ A, ZULIANI T, ŠČANČAR J, et al. Determination of hexavalent Cr in river sediments by speciated isotope dilution inductively coupled plasma mass spectrometry[J]. Science of The Total Environment, 2018, 637: 1286-1294. |
| [10] | EL-NAGGAR M E, EL-NEWEHY M H, ALDALBAHI A, et al. Immobilization of anthocyanin extract from red-cabbage into electrospun polyvinyl alcohol nanofibers for colorimetric selective detection of ferric ions[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105072. |
| [11] |
LOTFI ZADEH ZHAD H R, LAI R Y. Hexavalent chromium as an electrocatalyst in DNA sensing[J]. Analytical Chemistry, 2017, 89(24): 13342-13348.
DOI PMID |
| [12] | WILLIE S N, STURGEON R E. Determination of transition and rare earth elements in seawater by flow injection inductively coupled plasma time-of-flight mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(9): 1707-1716. |
| [13] | WOHLMANN W, NEVES V M, HEIDRICH G M, et al. Development of an electrothermal vaporizer for direct mercury determination in soil by inductively-coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 149: 222-228. |
| [14] | LI H L, EDDAOUDI M, O’KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279. |
| [15] | YOU L-X, YAO S-X, ZHAO B-B, et al. Striking dual functionality of a novel Pd@Eu-MOF nanocatalyst in C(sp2)-C(sp2) bond-forming and CO2 fixation reactions[J]. Dalton Transactions, 2020, 49(19): 6368-6376. |
| [16] | SINGH M, PALAKKAL A S, PILLAI R S, et al. N-Functionality actuated improved CO2 adsorption and turn-on detection of organo-toxins with guest-induced fluorescence modulation in isostructural diamondoid MOFs[J]. Journal of Materials Chemistry C, 2021, 9(22): 7142-7153. |
| [17] | YU S, HU H C, LIU D C, et al. Structural and magnetic studies of six-coordinated Schiff base Dy(iii) complexes[J]. Inorganic Chemistry Frontiers, 2022, 9(12): 3059-3070. |
| [18] | CAI M R, QIN L Y, YOU L T, et al. Functionalization of MOF-5 with mono-substituents: effects on drug delivery behavior[J]. RSC Advances, 2020, 10(60): 36862-36872. |
| [19] | KINZHALOV M A, GRACHOVA E V, LUZYANIN K V. Tuning the luminescence of transition metal complexes with acyclic diaminocarbene ligands[J]. Inorganic Chemistry Frontiers, 2022, 9(3): 417-439. |
| [20] | YAN B, WU H C, MA P T, et al. Recent advances in rare earth Co-doped luminescent tungsten oxygen complexes[J]. Inorganic Chemistry Frontiers, 2021, 8(18): 4158-4176. |
| [21] | DENG W H, NARESH KUMAR P, LI W H, et al. Superprotonic conductivity of Ti-based MOFs with Brønsted acid-base pairs[J]. Inorganica Chimica Acta, 2020, 502: 119317. |
| [22] | ZHANG M X, LIN Q J, WU W G, et al. Isostructural MOFs with higher proton conductivity for improved oxygen evolution reaction performance[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16367-16375. |
| [23] | BAI Z X, LIU S C, CHENG G J, et al. High proton conductivity of MOFs-polymer composite membranes by phosphoric acid impregnation[J]. Microporous and Mesoporous Materials, 2020, 292: 109763. |
| [24] | HUANG Q Q, LIN Y J, ZHENG R, et al. Tunable electrical conductivity of a new 3D MOFs: Cu-TATAB[J]. Inorganic Chemistry Communications, 2019, 105: 119-124. |
| [25] | ABDELHAMEED R M, EMAM H E, ROCHA J, et al. Cu-BTC metal-organic framework natural fabric composites for fuel purification[J]. Fuel Processing Technology, 2017, 159: 306-312. |
| [26] | BHADRA B N, AHMED I, JHUNG S H. Remarkable adsorbent for phenol removal from fuel: functionalized metal-organic framework[J]. Fuel, 2016, 174: 43-48. |
| [27] | XU M Z, SONG N, QIU D D, et al. A porous and chemical stable Co(II)-based metal-organic framework for the selective fluorescence sensing of Fe3+ and tetracycline[J]. Journal of Solid State Chemistry, 2024, 332: 124562. |
| [28] | BAI W B, QIN G X, WANG J, et al. 2-Aminoterephthalic acid co-coordinated Co-MOF fluorescent probe for highly selective detection of the organophosphorus pesticides with p-nitrophenyl group in water systems[J]. Dyes and Pigments, 2021, 193: 109473. |
| [29] | LIU Y T, QIU Q, ZHANG X Y, et al. Tetra-imidazole functionalized pyrene for constructing Co-MOF and its application for sensing of cyanide ion[J]. Journal of Solid State Chemistry, 2021, 300: 122258. |
| [30] | WU G M, LI W J, YANG L B, et al. A dual-function cobalt metal-organic framework for high proton conduction and selective luminescence sensing of histidine[J]. Journal of the Electrochemical society, 2022, 169(1): 014512. |
| [31] | LI Z J, JU Y, WU X L, et al. Topological control of metal-organic frameworks toward highly sensitive and selective detection of chromate and dichromate[J]. Inorganic Chemistry Frontiers, 2023, 10(6): 1721-1730. |
| [32] | WANG S B, SUN B, SUN J, et al. Lanthanide metal-organic frameworks based on planar π-conjugated ligands for white light emission, temperature and chemical sensing[J]. Dyes and Pigments, 2022, 202: 110256. |
| [33] | LIU X Z, CHEN H T, FAN L M, et al. Syntheses, crystal structures, and luminescence properties of four coordination polymers based on 1, 3, 5-tris (imidazol-1-yl)benzene[J]. Zeitschrift Für Anorganische und Allgemeine Chemie, 2017, 643(2): 192-197. |
| [34] | SU Z, XU J, FAN J, et al. Synthesis, crystal structure, and photoluminescence of coordination polymers with mixed ligands and diverse topologies[J]. Crystal Growth & Design, 2009, 9(6): 2801-2811. |
| [35] | XUE Z Z, SHENG T L, WANG Y L, et al. A series of d10 coordination polymers constructed with a rigid tripodal imidazole ligand and varied polycarboxylates: syntheses, structures and luminescence properties[J]. CrystEngComm, 2015, 17(9): 2004-2012. |
| [36] | XU T Y, WANG H, LI J M, et al. A water-stable luminescent Zn(II) coordination polymer based on 5-sulfosalicylic acid and 1, 4-bis(1H-imidazol-1-yl)benzene for highly sensitive and selective sensing of Fe3+ ion[J]. Inorganica Chimica Acta, 2019, 493: 72-80. |
| [37] | XU T Y, LI J M, HAN Y H, et al. A new 3D four-fold interpenetrated dia-like luminescent Zn(ii)-based metal-organic framework: the sensitive detection of Fe3+, Cr2O7 2-, and CrO4 2- in water, and nitrobenzene in ethanol[J]. New Journal of Chemistry, 2020, 44(10): 4011-4022. |
| [38] | XU T Y, NIE H J, LI J M, et al. Luminescent Zn(II)/Cd(II) coordination polymers based on 1-(tetrazol-5-H)-3, 5-bis(1-triazole)benzene for sensing Fe3+, Cr2O7 2-, and CrO4 2- in water[J]. Journal of Solid State Chemistry, 2020, 287: 121342. |
| [39] | XU T Y, NIE H J, LI J M, et al. Highly selective sensing of Fe3+/Hg2+ and proton conduction using two fluorescent Zn(ii) coordination polymers[J]. Dalton Transactions, 2020, 49(32): 11129-11141. |
| [40] | 杨 轶, 周子鹏, 余思冀, 等. 基于咪唑衍生物和间苯二甲酸配体的Cd(Ⅱ)配合物的合成、结构及性能[J]. 南京理工大学学报, 2020, 44(1): 100-106. |
| YANG Y, ZHOU Z P, YU S J, et al. Synthesis, structure and fluorescence properties of a Cd(Ⅱ) complex based on imidazole derivative and 1, 3-benzenedicarboxylic acid[J]. Journal of Nanjing University of Science and Technology, 2020, 44(1): 100-106 (in Chinese). | |
| [41] | 董顺芳. 基于bpdb和间苯二甲酸及其衍生物构筑的配位化合物合成、结构及性质研究[D]. 昆明: 云南大学, 2016. |
| DONG S F. Synthesis, structure and properties of coordination compounds based on bpdb and m-phthalic acid and its derivatives[D]. Kunming: Yunnan University, 2016 (in Chinese). | |
| [42] | 滑继爱. 基于1, 3, 5-三(1-咪唑基)苯配位聚合物的合成及性质研究[D]. 南京: 南京大学, 2015. |
| HUA J A . Synthesis and properties of coordination polymers based on 1, 3, 5- tris (1- imidazolyl) benzene[D]. Nanjing: Nanjing University, 2015 (in Chinese). | |
| [43] | PAN Z R, SHI Z Z, GAO X J, et al. Two luminescent Zn(II) metal-organic frameworks for exceptionally selective detection of picric acid[J]. Inorganic Chemistry Communications, 2017, 86: 290-294. |
| [44] | XIA Y P, WANG C X, FENG R, et al. A novel double-walled Cd(II) metal-organic framework as highly selective luminescent sensor for Cr2O7 2- anion[J]. Polyhedron, 2018, 153: 110-114. |
| [45] | CUI J N, ZHU H, CUI G H. A water-stable 3D Zn(Ⅱ) luminescent coordination polymer for highly sensitive and selective sensing of acetylacetone and Fe3+ ion[J]. Inorganic Chemistry Communications, 2021, 129: 108654. |
| [46] | HASI Q M, SU X H, MU X T, et al. Synthesis, crystal structures and selective luminescence sensing property of Zn(II) coordination polymers based on semi-rigid tricarboxylic acid ligands[J]. Journal of Molecular Structure, 2022, 1263: 133162. |
| [47] | WU Y D, LIU D Y, LIN M H, et al. Zinc(Ⅱ)-based coordination polymer encapsulated Tb3+ as a multi-responsive luminescent sensor for Ru3+, Fe3+, CrO4 2-, Cr2O7 2- and MnO4 – [J]. RSC Advances, 2020, 10(10): 6022-6029. |
| [1] | JIN Yuxi, YU Haili, WANG Yuqing, XIE Longchen, TIAN Hongrui, CHEN Baokuan. Synthesis, Crystal Structure and Magnetic of Di-Nuclear VIV Complex [J]. Journal of Synthetic Crystals, 2025, 54(6): 1021-1026. |
| [2] | XU Tongtao, WAN Hongshan, YANG Tianxing, GAO Min, WANG Chong. Synthesis, Characterization and Properties of Two Coppper(Ⅱ) Complexes Derived from 4-Amino-2,6-Dimethoxypyrimidine [J]. Journal of Synthetic Crystals, 2025, 54(4): 684-692. |
| [3] | LI Jia, FENG Jing, MIAO Meng. Crystal Structure and Magnetism of Two Isomorphic Complexes Based on Mixed Ligands [J]. Journal of Synthetic Crystals, 2025, 54(4): 693-699. |
| [4] | XU Yarong, ZHAO Jiuzhou, ZHAO Chengxiong, LIANG Yinong, SUN Zan. Synthesis, Structure and Hirshfeld Analysis of Zn Coordination Polymer Based on 1,3-Benzodioxole-5-Carboxylic Acid and 4,4′-Bipyridine [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 115-120. |
| [5] | WANG Xinying, QIAO Decong, PAN Huibin, GAO Xia, LU Jiufu. Cd(Ⅱ)-Based Fluorescent Sensing Organic Framework Constructed by Mixed Ligands and Its Performance [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 126-132. |
| [6] | LI Miao, ZHENG Yimeng, SUN Yiting, MAO Yuling, ZHU Baili, CUI Shuxin. Preparation and Properties of a Cadmium Coordination Compound with 4,5-Imidazoledicarboxylic Acid [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 121-125. |
| [7] | ZHENG Quan, LIU Xuechao, WANG Hao, ZHU Xinfeng, PAN Xiuhong, CHEN Kun, DENG Weijie, TANG Meibo, XU Hao, WU Honghui, JIN Min. Effect of Aluminum Doping on the Crystal Structure and Properties of Indium Selenide Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1528-1535. |
| [8] | JIAO Sihui, WU Hongping, YU Hongwei. CsBa2ScB8O16: the First Rare-Earth Borate Simultaneously Containing Zero-Dimensional [B3O6] Units and One-Dimensional B—O Chains [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1550-1559. |
| [9] | WU Miao, SONG Juan, ZHOU Yunlong, REN Chuanqing. Synthesis, Crystal Structure and Fluorescence Properties of Zn(II) Complex Based on Pyrazine Carboxylic Acid Ligand [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1576-1582. |
| [10] | AN Hangyi, HUANG Yanxi, WANG Airong, WANG Xiaoli, LI Jiaming, SHI Zhongfeng. A Novel Three-Dimensional Ni (II) Complex: Synthesis, Crystal Structure and Detection for Fe3+, CrO2-4 and Cr2O2-7 in Water [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1599-1607. |
| [11] | CHU Dongdong, YANG Zhihua, PAN Shilie. Research Progress on Theoretical Design of Nonlinear Optical Materials via Data-Driven Approach [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1475-1493. |
| [12] | SHI Yiwei, YANG Ruijie, ZHANG Yingchun, WANG Xin, WANG Min, SONG Zhiguo. Synthesis, Characterization and Quantum Chemical Calculation of Cobalt Coordination Polymer with 4,4′-bipy Bridge [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1583-1590. |
| [13] | YANG Ling, SU Binbin, WANG Hongsheng, LI Jinzhao, LI Yesheng, CHEN Rui. Synthesis, Crystal Structure and Photocatalytic Properties of Nanosized La3+-Substituted Arsenotungstate Cluster [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1591-1598. |
| [14] | CHENG Jiajia, WU Mengqi, YANG Min, WANG Limei, WEI Rongmin. Synthesis, Crystal Structure and Quantum Chemistry Study on [CoⅢ(DIEN)(N3)3] Complex [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1409-1415. |
| [15] | MAO Yunhong, ZHAO Chunshen. Synthesis, Crystal Structure and Antitumor Activity of 6-Fluoro-4-Hydroxy-3-Oxo-3,4-Dihydroquinoxaline-1 (2H)-Carboxylic Acid Tert-Butyl Ester [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1257-1268. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS