Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (12): 2146-2155.DOI: 10.16553/j.cnki.issn1000-985x.2025.0179
• Research Articles • Previous Articles Next Articles
ZHAN Junwei1,2,3(
), RUAN Yongqi1, CHEN Zhiqiang1, WEN Lei1, PENG Siyan1,2(
), YANG Liusai1,2(
)
Received:2025-08-11
Online:2025-12-20
Published:2026-01-04
CLC Number:
ZHAN Junwei, RUAN Yongqi, CHEN Zhiqiang, WEN Lei, PENG Siyan, YANG Liusai. Induced Phase Transformation and Luminescence Performance Optimization of Li+ Doped YPO4∶Dy3+ Phosphors[J]. Journal of Synthetic Crystals, 2025, 54(12): 2146-2155.
| Mole fraction of Li+/% | Phase composition/% | 2θ/(°) | Size/nm | Emission intensity | τ/ms | CIE(x, y) | |
|---|---|---|---|---|---|---|---|
| Phase(h-YPO4·0.8H2O) | Phase(t-YPO4) | ||||||
| 0 | 37.07 | 62.93 | 26.06 | 600 | 43.8 | 0.534 ms | (0.229, 0.277) |
| 1 | 19.06 | 80.94 | 26.10 | 490 | 62.2 | 0.532 ms | (0.233, 0.283) |
| 3 | 0 | 100 | 26.14 | 430 | 72.3 | 0.526 ms | (0.235, 0.286) |
| 5 | 0 | 100 | 25.94 | 270 | 100 | 0.514 ms | (0.236, 0.288) |
| 7 | 0 | 100 | 25.86 | 120 | 83.2 | 0.513 ms | (0.238, 0.289) |
Table 1 Phase composition, (200) plane diffraction peak 2 θvalues, average particle size, integrated emission intensity, lifetime ( τ ), and CIE coordinates of the calcined samples
| Mole fraction of Li+/% | Phase composition/% | 2θ/(°) | Size/nm | Emission intensity | τ/ms | CIE(x, y) | |
|---|---|---|---|---|---|---|---|
| Phase(h-YPO4·0.8H2O) | Phase(t-YPO4) | ||||||
| 0 | 37.07 | 62.93 | 26.06 | 600 | 43.8 | 0.534 ms | (0.229, 0.277) |
| 1 | 19.06 | 80.94 | 26.10 | 490 | 62.2 | 0.532 ms | (0.233, 0.283) |
| 3 | 0 | 100 | 26.14 | 430 | 72.3 | 0.526 ms | (0.235, 0.286) |
| 5 | 0 | 100 | 25.94 | 270 | 100 | 0.514 ms | (0.236, 0.288) |
| 7 | 0 | 100 | 25.86 | 120 | 83.2 | 0.513 ms | (0.238, 0.289) |
| Mole fraction of Li+/% | a/Å | c/Å | c/a | V/Å3 |
|---|---|---|---|---|
| JCPDS 74-2429 | 6.878 | 6.036 | 0.877 6 | 285.54 |
| 0 | 6.890 1(6) | 6.018 9(7) | 0.873 6 | 285.74(5) |
| 1 | 6.876 1(7) | 6.022 6(6) | 0.875 9 | 284.75(6) |
| 3 | 6.866 7(6) | 6.025 7(4) | 0.877 5 | 284.12(7) |
| 5 | 6.869 9(5) | 6.028 6(7) | 0.877 5 | 284.52(7) |
| 7 | 6.888 0(7) | 6.036 5(6) | 0.876 4 | 286.40(6) |
Table 2 Lattice parameters of the calcined YPO4∶5%Dy3+,x%Li+samples
| Mole fraction of Li+/% | a/Å | c/Å | c/a | V/Å3 |
|---|---|---|---|---|
| JCPDS 74-2429 | 6.878 | 6.036 | 0.877 6 | 285.54 |
| 0 | 6.890 1(6) | 6.018 9(7) | 0.873 6 | 285.74(5) |
| 1 | 6.876 1(7) | 6.022 6(6) | 0.875 9 | 284.75(6) |
| 3 | 6.866 7(6) | 6.025 7(4) | 0.877 5 | 284.12(7) |
| 5 | 6.869 9(5) | 6.028 6(7) | 0.877 5 | 284.52(7) |
| 7 | 6.888 0(7) | 6.036 5(6) | 0.876 4 | 286.40(6) |
Fig.7 Fluorescence lifetime curve of the YPO4∶5% Dy3+,5% Li+ sample (a) and fluorescence lifetime diagram of samples with different Li+ doping concentrations (b)
| Temperature/K | Ratio of emission intensity/% | ||
|---|---|---|---|
| x=0 | x=5% | x=7% | |
| Ea/eV | 0.159 | 0.167 | 0.158 |
| 298 | 100 | 100 | 100 |
| 323 | 96.2 | 97.3 | 96.3 |
| 348 | 94.5 | 95.7 | 94.4 |
| 373 | 91.2 | 93.1 | 91.4 |
| 398 | 89.1 | 91.5 | 89.4 |
| 423 | 86.1 | 89.1 | 86.5 |
| 448 | 83.7 | 86.9 | 83.9 |
| 473 | 80.6 | 84.1 | 81.1 |
Table 3 Variation values of emission intensity of calcined samples with temperature (set to 100% at 298 K), and thermal activation energy Ea
| Temperature/K | Ratio of emission intensity/% | ||
|---|---|---|---|
| x=0 | x=5% | x=7% | |
| Ea/eV | 0.159 | 0.167 | 0.158 |
| 298 | 100 | 100 | 100 |
| 323 | 96.2 | 97.3 | 96.3 |
| 348 | 94.5 | 95.7 | 94.4 |
| 373 | 91.2 | 93.1 | 91.4 |
| 398 | 89.1 | 91.5 | 89.4 |
| 423 | 86.1 | 89.1 | 86.5 |
| 448 | 83.7 | 86.9 | 83.9 |
| 473 | 80.6 | 84.1 | 81.1 |
Fig.8 Relationship between normalized intensity and temperature (a) and the plot of ln(I0/IT-1) versus 1/(kBT) for the determination of thermal activation energy (b)
| [1] | LI H H, WANG Y K, LIAO L S. Near-infrared luminescent materials incorporating rare earth/transition metal ions: from materials to applications[J]. Advanced Materials, 2024, 36(30): 2403076. |
| [2] | LIN Q M, WU X Z, PENG J Q, et al. Near-unity internal quantum efficiency and high thermal stability of Sr3MgGe5O14∶Cr3+ phosphor for plant growth[J]. Laser & Photonics Reviews, 2025, 19(10): 2402047. |
| [3] | 白 鑫, 杨伟斌, 熊飞兵, 等. 碱金属离子共掺Sr3Ga2Ge4O14∶Dy3+发光性能研究[J]. 人工晶体学报, 2024, 53(1): 97-106. |
| BAI X, YANG W B, XIONG F B, et al. Luminescence performance of alkaline metal ion co-doped Sr3Ga2Ge4O14∶Dy3+ [J]. Journal of Synthetic Crystals, 2024, 53(1): 97-106 (in Chinese). | |
| [4] | 孟晓燕, 甘 欣, 王春洋, 等. CaMoO4∶Dy3+/Sm3+白光荧光粉的设计、合成及发光性能研究[J]. 人工晶体学报, 2025, 54(4): 663-673. |
| MENG X Y, GAN X, WANG C Y, et al. Design, synthesis and luminescent properties of CaMoO4∶Dy3+/Sm3+ white phosphors[J]. Journal of Synthetic Crystals, 2025, 54(4): 663-673 (in Chinese). | |
| [5] | BEDYAL A K, KUMAR V, PRAKASH R, et al. A near-UV-converted LiMgBO3∶Dy3+ nanophosphor: surface and spectral investigations[J]. Applied Surface Science, 2015, 329: 40-46. |
| [6] | LI C X, HOU Z Y, ZHANG C M, et al. Controlled synthesis of Ln3+ (Ln = Tb, Eu, Dy) and V5+ ion-doped YPO4 nano-/ microstructures with tunable luminescent colors[J]. Chemistry of Materials, 2009, 21(19): 4598-4607. |
| [7] | WU J X, LIU C L, JIA H L, et al. Optical properties, energy transfer and thermal stability of spherical nano-phosphor YPO4∶Eu3+∶Sm3+ [J]. Journal of Luminescence, 2022, 245: 118791. |
| [8] | LAI H, DU Y, ZHAO M, et al. CTAB assisted hydrothermal preparation of YPO4∶Tb3+ with controlled morphology, structure and enhanced photoluminescence[J]. Materials Science and Engineering: B, 2014, 179: 66-70. |
| [9] | MA J F, CHEN Y L, WANG X, et al. Luminescent performance of Ca2SnO4∶Tb3+ phosphors with Li+ co-doping[J]. Optical Materials, 2018, 85: 86-90. |
| [10] | PARCHUR A K, NINGTHOUJAM R S. Preparation, microstructure and crystal structure studies of Li+ co-doped YPO4∶Eu3+ [J]. RSC Advances, 2012, 2(29): 10854-10858. |
| [11] | ASGARANI M K, SAIDI A, ABBASI M H. Role of oxygen vacancy and grain boundary energy in stability of tetragonal and cubic pure zirconia powders[J]. Powder Metallurgy, 2011, 54(2): 127-132. |
| [12] | WU D, YE X Y, LIU S B, et al. Structure and luminescence properties of Li+-doped (ScLu)VO4∶Eu3+ red phosphors[J]. Journal of the Chinese Ceramic Society, 2018, 46 (01): 128-135. |
| [13] | 袁 强, 甄安心, 罗 棋, 等. Li+掺杂对Ca(W, Mo)O4∶Eu3+红色荧光粉结构及发光性能的影响[J]. 中国钨业, 2018, 33(2): 53-58. |
| YUAN Q, ZHEN A X, LUO Q, et al. Effect of Li+ doped on the structure and luminescence properties of Ca(W, Mo)O4∶Eu3+ phosphors[J]. China Tungsten Industry, 2018, 33(2): 53-58 (in Chinese). | |
| [14] | PETROVIĆ Đ, JAKOVLJEVIĆ I, JOKSOVIĆ L, et al. Study of the hydrolytic properties of the trivalent Y-ion in chloride medium[J]. Polyhedron, 2016, 105: 1-11. |
| [15] | SONG J G, ZHANG L M, LI J G, et al. Thermodynamic and kinetic analyses of synthesizing ZrB2@Al(OH)3- y (OH)3 core-shell composite particles[J]. Surface Review and Letters, 2007, 14(1): 117-122. |
| [16] | WU H, XU H F, SU Q, et al. Size- and shape-tailored hydrothermal synthesis of YVO4 crystals in ultra-wide pH range conditions[J]. Journal of Materials Chemistry, 2003, 13(5): 1223-1228. |
| [17] | WANG F, YU L S, ZHU Y F, et al. Defect control and optical performance of yttrium orthovanadate nanocrystals via a facile pH-sensitive synthesis[J]. Journal of Alloys and Compounds, 2023, 968: 172259. |
| [18] | HOVINGTON P, TIMOSHEVSKII V, BURGESS S, et al. Towards Li quantification at high spatial resolution using EDS[J]. Microscopy and Microanalysis, 2016, 22(S3): 84-85. |
| [19] | ZHAN J W, PENG S Y, ZHU Y X, et al. Phase transitions and optical properties of Tb3+ activated NaY(WO4)2 phosphors[J]. Ceramics International, 2024, 50(3): 4896-4906. |
| [20] | 孟晓燕, 廖 云, 张丽蓉, 等. GdPO4∶Tb3+荧光粉的制备及发光性能研究[J]. 人工晶体学报, 2024, 53(1): 107-114. |
| MENG X Y, LIAO Y, ZHANG L R, et al. Preparation and luminescent properties of GdPO4∶Tb3+ phosphors[J]. Journal of Synthetic Crystals, 2024, 53(1): 107-114 (in Chinese). | |
| [21] | 赵 炎, 蒋小康, 高 峰, 等. Dy3+掺杂Gd2MgTiO6白色荧光粉的制备及发光性能研究[J]. 人工晶体学报, 2023, 52(11): 2050-2056. |
| ZHAO Y, JIANG X K, GAO F, et al. Preparation and luminescence properties of Dy3+ doped Gd2MgTiO6 white phosphor[J]. Journal of Synthetic Crystals, 2023, 52(11): 2050-2056 (in Chinese). | |
| [22] | MAMATHA G R, RADHA KRUSHNA B R, MALLESHAPPA J, et al. Investigating the influence of mono-, di-, and trivalent co-dopants (Li+, Na+, K+, Ca2+, Bi3+) on the photoluminescent properties and their prospective role in data security applications for SrAl2O4∶Tb3+ nanophosphors synthesized via an eco-friendly combustion method[J]. Materials Science and Engineering: B, 2024, 299: 117008. |
| [23] | YANG Y Y, YAN Y L, FAN C J, et al. Emission brightness and concentration quenching threshold of GdVO4∶Eu3+ nanophosphors co-doped with alkali metal ions[J]. ChemistrySelect, 2021, 6(47): 13452-13460. |
| [24] | REDDY L. A review of the efficiency of white light (or other) emissions in singly and co-doped Dy3+ ions in different host (phosphate, silicate, aluminate) materials[J]. Journal of Fluorescence, 2023, 33(6): 2181-2192. |
| [25] | LU Z, SUN D S, LYU Z Y, et al. Blue Ca4MgAl2Si3O14∶Ce3+, Li+ phosphor with excellent performance for human-centered green plant growth lighting[J]. Materials Today Chemistry, 2023, 34: 101813. |
| [26] | SONALI, CHAUHAN V, PANDEY P C, et al. Role of sensitizer ions in enhancing the luminescence intensity of Eu3+-activated NaLa(MoO4)2 phosphors and judd-ofelt analysis for solid-state lighting and temperature-sensing applications[J]. ACS Applied Optical Materials, 2024, 2(1): 41-56. |
| [27] | 袁高峰, 崔瑞瑞, 张 鑫, 等. Li+掺杂浓度对Sr3ZnNb2O9∶Eu3+荧光粉发光特性的影响[J]. 硅酸盐通报, 2021, 40(12): 4128-4136. |
| YUAN G F, CUI R R, ZHANG X, et al. Effect of Li+ doping concentration on luminescence characteristics of Sr3ZnNb2O9∶Eu3+ phosphor[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(12): 4128-4136 (in Chinese). |
| [1] | MENG Xiaoyan, GAN Xin, WANG Chunyang, ZHU Yaoxian, YANG Liusai, WU Lidan, DONG Hongxia. Design, Synthesis and Luminescent Properties of CaMoO4:Dy3+/Sm3+ White Phosphors [J]. Journal of Synthetic Crystals, 2025, 54(4): 663-673. |
| [2] | SHU Jian, LI Shengnan, JIANG Yi, JIA Zhenguo. Afterglow Performance Optimization of Dy3+ Doped SrAl2O4:Tb3+ Afterglow Luminescent Phosphors [J]. Journal of Synthetic Crystals, 2025, 54(4): 652-662. |
| [3] | ZHANG Bo, WANG Yunjie, QI Yajie, DING Jiafu, HE Zhihao, SU Xin. First Principles Study on the Structure-Property Relationship of Alkali Metal Molybdates [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 999-1007. |
| [4] | HU Fangfang, LI Shun, CAI Sixiang, JIANG Hong, MA Yanping. Alkali Resistance of Iron Vanadium Based Oxides by SAPO-34 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(3): 493-501. |
| [5] | LI Haolai, YANG Weibin, LIN Yizhan, LING Shuang, XIONG Feibing. Preparation and Luminescent Properties of Sr7Sb2O12∶Dy3+ Phosphors [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(11): 1921-1928. |
| [6] | YANG Chenyue, LI Lingyan, LI Man, SHEN Yiming, PAN Shangke, PAN Jianguo. Synthesis, Crystal Structure and Luminescence Properties of [(Epy)2][MnBr2I2] Complex [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(2): 345-352. |
| [7] | LI Ming-yang;WEI Qin-hua;QIN Lai-shun;SHI Hong-sheng. Growth and Fluorescence Properties of KSr2I5∶Eu Single Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(5): 804-808. |
| [8] | YANG Shao-bin;LI Si-nan;TANG Shu-wei;SHEN Ding;MAO Yong-qiang;CHEN Yue-hui. First-principles Study on Alkali-metal Atoms Adsorpted on Defective Bilayer Graphene [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2016, 45(7): 1854-1859. |
| [9] | ZHANG Li-xue;CHEN Chang-le;LUO Bing-cheng. Light-emitting Properties of Alkali Metal-doped ZnO Thin Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2009, 38(6): 1477-1480. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS