[1] XIANG Y F, LI H, ZHANG H Z, et al. Microwave-assisted fast synthesis and red-emitting properties of a borotellurate-based phosphor with excellent thermostability[J]. Journal of Rare Earths, 2024, 42(6): 1036-1045. [2] PHUONG LOAN N T, LE A T. Enhance the chromatic uniformity and luminous efficiency of WLEDs with triple-layer remote phosphor structures[J]. International Journal of Electrical and Computer Engineering (IJECE), 2020, 10(6): 6244. [3] ZHANG Q, DING X, LIU B, et al. A promising yellow-emitting langbeinite-type phosphor NaBaY2(PO4)3: Eu2+ for WLEDs[J]. Dalton Transactions, 2024, 53(3): 996-1003. [4] TAO S X, PING Y H, HUANG F F, et al. Design of the YAG: Ce3+ phosphor in tellurite-germanate glass with high luminous efficiency for laser lighting[J]. Ceramics International, 2023, 49(12): 19606-19614. [5] SEERE VALAPPIL J, VANNADIL PUTHIYAVEETIL V, CHERLAN KOTTIANMADATHIL S, et al. Unveiling the luminescence property of Pr-incorporated Barium cerate perovskites for white LED applications[J]. Zeitschrift Für Naturforschung A, 2024, 79(5): 503-516. [6] YAO Q, PAN X Y, TIAN J J, et al. (Sr, Ca)AlSiN3: Eu2+ phosphor-doped YAG: Ce3+ transparent ceramics as novel green-light-emitting materials for white LEDs[J]. Materials, 2023, 16(2): 730. [7] WANG Z X, LIN H, ZHANG D W, et al. Deep-red emitting Mg2TiO4:Mn4+ phosphor ceramics for plant lighting[J]. Journal of Advanced Ceramics, 2021, 10(1): 88-97. [8] ZHANG S J, GAI S J, ZHANG X J, et al. Enhanced luminescence properties of Li2MgTiO4: Mn4+, Ge4+ phosphor via single cation substitution for indoor plant cultivation[J]. Ceramics International, 2022, 48(3): 3070-3080. [9] ZHANG S A, HU Y H, DUAN H, et al. An efficient, broad-band red-emitting Li2MgTi3O8:Mn4+ phosphor for blue-converted white LEDs[J]. Journal of Alloys and Compounds, 2017, 693: 315-325. [10] YUAN L F, JIN Y H, XIONG G T, et al. Flux-assisted low-temperature synthesis of Mn4+-doped unusual broadband deep-red phosphors toward warm w-LEDs[J]. Journal of Alloys and Compounds, 2021, 870: 159394. [11] VINOTHKUMAR G, RENGARAJ S, ARUNKUMAR P, et al. Ionic radii and concentration dependency of RE3+ (Eu3+, Nd3+, Pr3+, and La3+)-doped cerium oxide nanoparticles for enhanced multienzyme-mimetic and hydroxyl radical scavenging activity[J]. The Journal of Physical Chemistry C, 2019, 123(1): 541-553. [12] PRASAD S A V, DEEPTY M, RAMESH P N, et al. Synthesis of MFe2O4 (M=Mg2+, Zn2+, Mn2+) spinel ferrites and their structural, elastic and electron magnetic resonance properties[J]. Ceramics International, 2018, 44(9): 10517-10524. [13] YE K, YAN Z W, YANG X L, et al. Enhanced red emission in Li2Mg3TiO6:Mn4+ phosphor via Na+ and Ge4+ doping[J]. Optical Materials, 2021, 121: 111480. [14] NHAN N H K, MINH T H Q, NGUYEN T N, et al. Effect of the green-emitting CaF2: Ce3+, Tb3+ phosphor particles' size on color rendering index and color quality scale of the in-cup packaging multichip white LEDs[J]. Digest Journal of Nanomaterials and Biostructures, 2018, 13(2): 345-351. [15] BAK G H, OH S W, SUNG H H, et al. Effect of phosphor layer size on the optical and thermal properties of chip scale packaged light-emitting diodes[J]. ECS Transactions, 2018, 85(7): 67-72. [16] KANG Y, LI S X, TIAN R D, et al. Fine-grained phosphors for red-emitting mini-LEDs with high efficiency and super-luminance[J]. Journal of Advanced Ceramics, 2022, 11(9): 1383-1390. [17] BERGIN M J, BUTLER K H. Measurement of particle size distribution of phosphors[J]. Journal of the Electrochemical Society, 1954, 101(3): 149. [18] JING X, IRELAND T, GIBBONS C, et al. Control of Y2O3: Eu spherical particle phosphor size, assembly properties, and performance for FED and HDTV[J]. Journal of the Electrochemical Society, 1999, 146(12): 4654-4658. [19] BASAVARAJ R B, SURESHKUMAR K, AARTI D P, et al. Excellent photoluminescence and electrochemical properties of Sm3+ doped Ca2MgSi2O7 nanophosphor: display and electrochemical sensor applications[J]. Journal of Rare Earths, 2024, 42(6): 1046-1055. [20] LANDI S, SEGUNDO I R, FREITAS E, et al. Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements[J]. Solid State Communications, 2022, 341: 114573. [21] LI M T, YUAN B X, ZHENG X Y, et al. Phase tailoring and color-tunable luminescence of LaNbO4: Tb3+, Eu3+ nanophosphors for deep UV-pumped pc-WLEDs application[J]. Ceramics International, 2024, 50(11): 20632-20643. [22] SHI Y Z, CUI R R, LIU X Y, et al. Luminescence properties of rare earth (Eu3+ and Sm3+)-doped double perovskite Sr2YNbO6 phosphors[J]. Journal of Electronic Materials, 2023, 52(10): 6403-6415. [23] LI Z, WANG Y N, WU K Y, et al. Preparation and performance of SrWO4:RE3+ (RE=Eu, Sm, Pr) fluorescent powders for white leds[J]. Journal of Applied Spectroscopy, 2023, 90(3): 723-729. [24] XU Y Y, LI G F, GUAN X F, et al. Synthesis, crystal structure and photoluminescence properties of novel double perovskite La2CaSnO6:Eu3+ red-emitting phosphors[J]. Journal of Rare Earths, 2022, 40(11): 1682-1690. [25] SHARMA V D, KHAJURIA P, KHAJURIA A, et al. Photoluminescent and X-ray photoemission studies of Eu3+-doped kosnarite KZr2(PO4)3 nanophosphor and its Judd-Ofelt analysis[J]. Journal of Nanoparticle Research, 2024, 26(7): 166. [26] VASANTHI B, GOPAKUMAR N, ANJANA P S, et al. Mechanoluminescence and photoluminescence properties of Eu3+ activated SrGa2O4 phosphors[J]. Luminescence: the Journal of Biological and Chemical Luminescence, 2023, 39(1): 4602. [27] SUN Q, WANG S Y, DEVAKUMAR B, et al. Double perovskite Ca2LuTaO6:Eu3+ red-emitting phosphors: synthesis, structure and photoluminescence characteristics[J]. Journal of Alloys and Compounds, 2019, 804: 230-236. [28] HUA Y B, HUSSAIN S K, YU J S. Eu3+-activated double perovskite Sr3MoO6 phosphors with excellent color purity for high CRI WLEDs and flexible display film[J]. Ceramics International, 2019, 45(15): 18604-18613. |