[1] 宋思陶. 基于BGO晶体的电场测量方法研究[D]. 合肥: 合肥工业大学, 2020. SONG S T. Research on electric field measurement method based on BGO crystal[D]. Hefei: Hefei University of Technology, 2020 (in Chinese). [2] 任国浩. 无机闪烁晶体在我国的发展史[J]. 人工晶体学报, 2019, 48(8): 1373-1385. REN G H. Development history of inorganic scintillation crystals in China[J]. Journal of Synthetic Crystals, 2019, 48(8): 1373-1385 (in Chinese). [3] 马志程, 李 丹, 张宝龙. 基于改进 Mask R-CNN的光学元件划痕缺陷检测研究[J]. 电子测量与仪器学报, 2023, 37(4): 231-239. MA Z C, LI D, ZHANG B L. Research on scratch defect detection of optical components based on improved Mask R-CNN[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(4): 231-239. [4] 汤文龙, 梁尚娟, 焦 翔, 等. 抛光过程中光学元件表面划痕的形成和控制[J]. 中国激光, 2019, 46(12): 1202009. TANG W L, LIANG S J, JIAO X, et al. Formation and control of scratches on surfaces of optical components during polishing[J]. Chinese Journal of Lasers, 2019, 46(12): 1202009 (in Chinese). [5] TAN Z Y, JI Y, FEI Z W, et al. Image-based scratch detection by fuzzy clustering and morphological features[J]. Applied Sciences, 2020, 10(18): 6490. [6] 李 原, 李燕君, 刘进超, 等. 基于改进Res-UNet网络的钢铁表面缺陷图像分割研究[J]. 电子与信息学报, 2022, 44(5): 1513-1520. LI Y, LI Y J, LIU J C, et al. Research on segmentation of steel surface defect images based on improved Res-UNet network[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1513-1520 (in Chinese). [7] 马云鹏, 李庆武, 何飞佳, 等. 金属表面缺陷自适应分割算法[J]. 仪器仪表学报, 2017, 38(1): 245-251. MA Y P, LI Q Q, HE F J, et al. Adaptive segmentation algorithm for metal surface defects[J]. Chinese Journal of Scientific Instrument, 2017, 38(1): 245-251 (in Chinese). [8] 陈其浩, 孙 林, 张 倩. 基于改进U2-Net的透明件划痕检测方法[J]. 科学技术与工程, 2022, 22(2): 620-627. CHEN Q H, SUN L, ZHANG Q. Scratch detection method of transparent parts based on improved U2-net[J]. Science Technology and Engineering, 2022, 22(2): 620-627 (in Chinese). [9] XIAO G J, ZHU B, ZHANG Y D, et al. FCSNet: a quantitative explanation method for surface scratch defects during belt grinding based on deep learning[J]. Computers in Industry, 2023, 144: 103793. [10] LIU Y, QIN Y B, LIN Z L, et al. Detection of scratch defects on metal surfaces based on MSDD-UNet[J]. Electronics, 2024, 13(16): 3241. [11] WANG L, WANG C L, SUN Z Q, et al. An improved dice loss for pneumothorax segmentation by mining the information of negative areas[J]. IEEE Access, 2020, 8: 167939-167949. [12] GHIASI G, CUI Y, SRINIVAS A, et al. Simple copy-paste is a strong data augmentation method for instance segmentation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2021, Nashville, TN, USA. IEEE, 2021: 2917-2927. [13] SU H F, WANG X, HAN T, et al. Research on a U-net bridge crack identification and feature-calculation methods based on a CBAM attention mechanism[J]. Buildings, 2022, 12(10): 1561. [14] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018: 3-19. [15] ZHAO R J, QIAN B Y, ZHANG X L, et al. Rethinking dice loss for medical image segmentation[C]//2020 IEEE International Conference on Data Mining (ICDM). November 17-20, 2020, Sorrento, Italy. IEEE, 2020: 851-860. [16] YEUNG M, SALA E, SCHÖNLIEB C B, et al. Unified focal loss: generalising dice and cross entropy-based losses to handle class imbalanced medical image segmentation[J]. Computerized Medical Imaging and Graphics, 2022, 95: 102026. [17] 皮 磊, 朱 磊, 郑 翔, 等. 基于改进Wave-U-Net跳跃连接的盲源分离算法[J]. 信号处理, 2022, 38(4): 835-843. PI L, ZHU L, ZHENG X, et al. Blind source separation algorithm based on improved wave-U-net skip connection[J]. Journal of Signal Processing, 2022, 38(4): 835-843 (in Chinese). [18] ZHOU J C, HAO M L, ZHANG D H, et al. Fusion PSPnet image segmentation based method for multi-focus image fusion[J]. IEEE Photonics Journal, 2019, 11(6): 6501412. [19] YURTKULU S C, ŞAHIN Y H, UNAL G. Semantic segmentation with extended DeepLabv3 architecture[C]//2019 27th Signal Processing and Communications Applications Conference (SIU). April 24-26, 2019, Sivas, Turkey. IEEE, 2019: 1-4.[20] SIDDIQUE N, PAHEDING S, ELKIN C P, et al. U-net and its variants for medical image segmentation: a review of theory and applications[J]. IEEE Access, 2021, 9: 82031-82057. |