人工晶体学报 ›› 2025, Vol. 54 ›› Issue (5): 757-771.DOI: 10.16553/j.cnki.issn1000-985x.2024.0282
收稿日期:
2024-11-09
出版日期:
2025-05-15
发布日期:
2025-05-28
通信作者:
张蕾,博士,副教授。E-mail:zhanglei-2099@163.com作者简介:
李帅(1985—),男,吉林省人,实验师。E-mail:15846756341@163.com
基金资助:
Received:
2024-11-09
Online:
2025-05-15
Published:
2025-05-28
摘要: 半导体量子点材料具有独特的光学和电学特性,在LED、太阳能电池、荧光探针、催化等领域显示出巨大的应用潜力,尤其是Ⅳ-Ⅵ族半导体量子点材料,荧光光谱处于近红外波段且可以覆盖光纤通信窗口,将其制备成量子点掺杂的光纤在光纤通信领域具有较为广泛的应用。目前Ⅳ-Ⅵ族半导体量子点掺杂光纤的制备方法主要有改进的化学气相沉积法、溶胶-凝胶膜涂覆法、空心光纤灌装固化法、高温熔融直接拉丝法、管内熔融法、玻璃毛细管灌入法等六种。本文详细综述了以上六种实验制备方法及其优缺点,以及所制备量子点光纤的光学增益品质;基于六种不同理论模型和光纤类型,总结了量子点掺杂光纤发光性质及光学增益性质的理论计算;进一步讨论了实验和理论研究中存在的问题、解决方法,并对未来研究方向进行了展望。
中图分类号:
李帅, 张蕾. 近红外Ⅳ-Ⅵ族半导体量子点光纤的研究进展[J]. 人工晶体学报, 2025, 54(5): 757-771.
LI Shuai, ZHANG Lei. Research Progress on Near-Infrared Group Ⅳ-Ⅵ Semiconductor Quantum Dot Optical Fibers[J]. Journal of Synthetic Crystals, 2025, 54(5): 757-771.
图1 PbSe量子点掺杂光纤的衰减光谱(a)及在980 nm泵浦时的ASE光谱(b)[13]
Fig.1 Attenuation spectra of the PbSe QD doped optical fiber (a), and ASE spectra pumped at 980 nm (b)[13]
图2 PbSe量子点光纤预制棒(a)及PbSe量子点光纤在1 064 nm Nd∶YAG激光泵浦下的发射光谱(b)[14]
Fig.2 PbSe QD optical fiber prefabricated rod (a), and emission of a PbSe QD optical fiber at a 1 064 nm Nd∶YAG laser pump (b)[14]
图3 PbS量子点掺杂环形芯光纤增益情况[17]。(a)PbS量子点掺杂环形芯光纤截面图;(b)不同泵浦功率下光纤增益谱;(c)不同信号光功率下光纤增益谱
Fig.3 Gain of PbS QD doped ring core fiber[17]. (a) Cross section of PbS QD doped ring core fiber; fiber gain spectrum under different pump powers (b) and signal powers (c), respectively
图4 PbS量子点光纤放大器的结构示意图(a)及1 310 nm处光学增益随泵浦功率的变化(b)[18]
Fig.4 Schematic diagram of the device structure of the PbS QD fiber amplifier (a), and optical gain at 1 310 nm varies with pump power (b)[18]
图8 光纤拉制及发光情况[24]。(a)光纤拉伸后的预制件;(b)拉制产生的具有不同外径的黑色光纤;(c) 在532 nm连续激光泵浦下的发射光谱
Fig.8 Fiber drawing and emission situation[24]. (a) The preform following fiber drawing; (b) the drop-off and the resulting black fibers with varying outer diameters; (c) emission spectra for a 532 nm CW laser pumping
图12 在不同温度热处理10 h后PbS量子点掺杂玻璃光纤的归一化荧光光谱[31]。(a)光纤前段FB;(b)光纤中段FM;(c)光纤后段FE
Fig.12 Normalized PL spectra of PbS QD doped glass fibers heat treated at different temperatures for 10 h[31]. (a) Fiber FB; (b) fiber FM; (c) fiber FE
图13 芯层充满PbSe量子点的液芯石英光纤(a),以及在不同激发功率下PbSe量子点液芯光纤的发光光谱(b)[32]
Fig.13 The core layer of the liquid core quartz fiber filled with PbSe QDs (a), and the output spectra of the PbSe liquid core fiber at different excited powers (b)[32]
图14 PbSe量子点在四氯乙烯(a)和甲苯(b)中的吸收①、发光②和PbSe量子点光纤的发光③光谱,④分别为甲苯和四氯乙烯机溶剂的吸收谱[12]
Fig.14 The abs (①) and PL (②) spectra of PbSe QDs in TCE (a) and toluene (b), as well as the emission (③) spectra of PbSe QD optical fibers (④ curves are the Abs spectra of toluene and TCE solvents)[12]
Method | Pump wavelength/nm | Gain bandwidth/nm | Maximum gain/dB | Advantage | Disadvantage | Reference |
---|---|---|---|---|---|---|
MVCD (Soaking) | 980 | 1 537 | — | 实现硅基量子点光纤 | 掺杂工艺复杂 | [ |
MVCD (Atomization) | 1 064 | 1 540 | — | 简化掺杂工艺,提高掺杂程度和浓度均匀性 | — | [ |
MVCD (Ring core) | 980 | 1 500~1 600 | 8 | 解决光纤传输信号衰减和容量限制 | — | [ |
SGFC SGFC(PbS-MSN) | 980 980 | 1 310 1 550 | 10 8.09 | 工艺简单、与标准光纤兼容性好,抑制ASE噪声 | 增益较低,量子点涂覆层易受外界影响 | [ [ |
HFFS | 980 | 1 518~1 593 | 19 | 量子点荧光性能好、量子点分布均匀 | 光纤稳定性较差 | [ |
HTMDD HTMDD(Heat treatment) | 532 980 | 1 120~1 680 1 284~1 364 | — 20 | 减弱量子点不可控析出 | — | [ [ |
ITM | 808 | 1 550 | — | 对发光峰位进行大尺度或较为精细的调控 | 元素挥发及扩散导致光传输损耗 | [ |
GCI | 532 | 1 290 | — | 制备过程简单 | 光纤的封装比较难,很难投入生产 | [ |
表1 Ⅳ-Ⅵ族量子点光纤的制备方法及其增益特性
Table 1 Synthesis methods and gain characteristics of Ⅳ-Ⅵ QD optical fibers
Method | Pump wavelength/nm | Gain bandwidth/nm | Maximum gain/dB | Advantage | Disadvantage | Reference |
---|---|---|---|---|---|---|
MVCD (Soaking) | 980 | 1 537 | — | 实现硅基量子点光纤 | 掺杂工艺复杂 | [ |
MVCD (Atomization) | 1 064 | 1 540 | — | 简化掺杂工艺,提高掺杂程度和浓度均匀性 | — | [ |
MVCD (Ring core) | 980 | 1 500~1 600 | 8 | 解决光纤传输信号衰减和容量限制 | — | [ |
SGFC SGFC(PbS-MSN) | 980 980 | 1 310 1 550 | 10 8.09 | 工艺简单、与标准光纤兼容性好,抑制ASE噪声 | 增益较低,量子点涂覆层易受外界影响 | [ [ |
HFFS | 980 | 1 518~1 593 | 19 | 量子点荧光性能好、量子点分布均匀 | 光纤稳定性较差 | [ |
HTMDD HTMDD(Heat treatment) | 532 980 | 1 120~1 680 1 284~1 364 | — 20 | 减弱量子点不可控析出 | — | [ [ |
ITM | 808 | 1 550 | — | 对发光峰位进行大尺度或较为精细的调控 | 元素挥发及扩散导致光传输损耗 | [ |
GCI | 532 | 1 290 | — | 制备过程简单 | 光纤的封装比较难,很难投入生产 | [ |
图15 PbSe量子点的能级及PbSe量子点光纤发光[34]。(a)PbSe量子点材料的能级图;(b)在光纤长度为1.36 m时,信号增益随波长的变化;(c)信号增益随光纤长度的变化
Fig.15 Energy levels of PbSe QDs and emission of PbSe QD fibers[34]. (a) Energy level diagram of the PbSe QD; (b) the variation of signal gain with wavelength at a fiber length of 1.36 m; (c) the variation of signal gain with fiber length
图16 多量子点掺杂光纤放大器的信号增益[35]。(a)信号增益和噪声系数谱;(b)信号增益和带宽随光纤长度的变化
Fig.16 Signal gain of multi QD doped fiber amplifier[35]. (a) Signal gain and the noise figure as a function of wavelength; (b) signal gain and the bandwidth as a function of fiber length
图17 非均匀理论模型下PbSe量子点光纤放大器的增益谱[36]。(a)在尺寸分布函数的各种标准偏差下的增益谱;(b)具有不同输入功率的70个信号的增益谱
Fig.17 Gain spectra of PbSe QD fiber amplifier under inhomogeneous model[36]. (a) Gain spectra under various standard deviations of size distribution functions; (b) gain spectra for the seventy numbers of signals with different input powers
图18 量子点单模光纤激光器[9]。(a)光纤激光器结构图;(b)QDFL和YDFL在不同光纤长度时的激光功率对比
Fig.18 Quantum dot doped single mode fiber laser[9]. (a) Structure diagram of fiber laser; (b) comparison of laser power between QDFL and YDFL at different fiber lengths
图19 QD-MMF-A的发射光谱[37]。(a)在不同泵浦功率下的自发发射光谱,其中箭头的方向表示泵浦功率从5增加到10、20、30、40、50、60、70、80、90和100 mW;(b)归一化的光纤发射功率与泵浦功率的变化关系
Fig.19 Emission spectra of QD-MMF-A[37]. (a) The spontaneous emission spectra under different pump power in which the direction of the arrow represents the increase of pump power from 5 to 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mW; (b) the normalized pump power dependent emission power
图20 PbSe量子点液芯光纤在强泵浦条件下的受激发射和光学增益[37]。在泵浦功率为10至42(a)、50(b)和58 mW(c)时(功率间隔为4 mW),光纤长度为5、10和15 cm时的信号增益谱;(d)当泵浦功率固定在10 mW时,不同光纤长度(5、10、15、25、30、40 cm)下的信号增益光谱
Fig.20 Stimulated emission and optical gain of PbSe QD liquid core fiber under strong pumping conditions[37]. Signal gain spectra under different pump powers from 10 to 42 (a), 50 (b) and 58 mW (c) with a spacing of 4 mW for fiber length are 5, 10 and 15 cm; (d) signal gain spectra under different fiber length (5, 10, 15, 25, 30, 40 cm) when pump power is fixed at 10 mW
图21 二能级模型下量子点单模光纤放大器的增益[40]。(a)计算得到的量子点增益与实际增益比较;(b)泵浦功率不同条件下增益变化
Fig.21 Gain of QD single-mode fiber amplifier under two-level model[40]. (a) Comparison between the calculated QD gain and the actual gain; (b) gain variation under different pump power
图22 PbSe量子点/拉曼混合式光纤放大器的增益[42]。(a)用于理论计算的PbSe量子点/拉曼混合式光纤放大器的结构图;(b)混合式放大器的增益对PbSe量子点泵浦功率的依赖谱
Fig.22 Gain of PbSe QD/Raman hybrid fiber amplifie[42]. (a) The schematic diagram of the hybrid PbSe-QD/Raman amplifier used in the simulation; (b) dependence of mixed amplifier gain on PbSe QD pump power
Theoretical models and fiber types | Doping method | Pump wavelength/nm | Gain bandwidth/nm | Maximum gain/dB | Reference |
---|---|---|---|---|---|
Three energy level QD-SMF-A | Single size | 1 460~1 580 | 2 000 | 33.5 | [ |
Single size | 980 | 62 | 20 | [ | |
Two sizes | 980 | 122 | 20 | [ | |
Three sizes Four sizes | 980 980 | 200 277 | 20 20 | [ [ | |
Three energy level Inhomogeneous model for QD-SMF-A | Multi size | 1 540 | 92 | 35 | [ |
Three energy level QD-SMF-L | Single size | 1 550 | — | 2.7/m | [ |
Three energy level QD-MMF-A | Single size | 532 | 200~300 | 30 | [ |
Two energylevel QD-SMF-A | Single size | 1 100 | 500 | 22 | [ |
Three energy level QD/Raman-SMF-A | Three sizes | 980 | 100 | 29 | [ |
表2 量子点光纤的光学增益的理论计算
Table 2 Theoretical calculation of optical gain of QD fiber
Theoretical models and fiber types | Doping method | Pump wavelength/nm | Gain bandwidth/nm | Maximum gain/dB | Reference |
---|---|---|---|---|---|
Three energy level QD-SMF-A | Single size | 1 460~1 580 | 2 000 | 33.5 | [ |
Single size | 980 | 62 | 20 | [ | |
Two sizes | 980 | 122 | 20 | [ | |
Three sizes Four sizes | 980 980 | 200 277 | 20 20 | [ [ | |
Three energy level Inhomogeneous model for QD-SMF-A | Multi size | 1 540 | 92 | 35 | [ |
Three energy level QD-SMF-L | Single size | 1 550 | — | 2.7/m | [ |
Three energy level QD-MMF-A | Single size | 532 | 200~300 | 30 | [ |
Two energylevel QD-SMF-A | Single size | 1 100 | 500 | 22 | [ |
Three energy level QD/Raman-SMF-A | Three sizes | 980 | 100 | 29 | [ |
1 | CARUGE J M, HALPERT J E, WOOD V, et al. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers[J]. Nature Photonics, 2008, 2(4): 247-250. |
2 |
PARK M, SONG J Y, AN M, et al. Colloidal quantum dot light-emitting diodes employing solution-processable tin dioxide nanoparticles in an electron transport layer[J]. RSC Advances, 2020, 10(14): 8261-8265.
DOI PMID |
3 | 张 俊, 张 军, 耿俊杰, 等. PbS量子点在荧光集光太阳能光伏器件上的应用[J]. 光学学报, 2012, 32(1): 123003. |
ZHANG J, ZHANG J, GENG J J, et al. Application of PbS quantum dots in luminescent solar concentrator[J]. Acta Optica Sinica, 2012, 32(1): 123003 (in Chinese). | |
4 | YUN S H, KWOK S J J. Light in diagnosis, therapy and surgery[J]. Nature Biomedical Engineering, 2017, 1: 0008. |
5 | TACHAN Z, SHALOM M, HOD I, et al. PbS as a highly catalytic counter electrode for polysulfide-based quantum dot solar cells[J]. The Journal of Physical Chemistry C, 2011, 115(13): 6162-6166. |
6 | MOREELS I, LAMBERT K, DE MUYNCK D, et al. Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots[J]. Chemistry of Materials, 2007, 19(25): 6101-6106. |
7 | 程同蕾, 尹智远, 刘伟, 等. 稀土离子掺杂碲酸盐上转换发光玻璃及光纤的荧光传感应用[J]. 激光与光电子学进展, 2022, 59(15): 156-167. |
CHENG T, YIN Z, LIU W, et al. Rare earth ion-doped tellurite upconversion luminescent glass and optical fiber for fluorescence sensing applications[J]. Laser & Optoelectronics Progress, 2022, 59(15): 156-167 (in Chinese). | |
8 | DU H, CHEN C, KRISHNAN R, et al. Optical properties of colloidal PbSe nanocrystals[J]. Nano Letters, 2002, 2(11): 1321-1324. |
9 | CHENG C, WEI K H, CHENG X Y. A simulation of PbSe quantum dot-doped fiber laser[C]// 2009 Conference on Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics. August 30-3, 2009, Shanghai, China. IEEE, 2009: 1-2. |
10 | 许周速, 冯文举, 刘小峰, 等. 近红外Ⅳ-Ⅵ族半导体量子点掺杂玻璃及光纤研究进展[J]. 激光与光电子学进展, 2021, 58(15): 1516018. |
XU Z S, FENG W J, LIU X F, et al. Near infrared Ⅳ-Ⅵ semiconductor quantum dot-doped glasses and fibers[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516018 (in Chinese). | |
11 |
ZHANG Y, DAI Q Q, LI X B, et al. Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission[J]. Nanoscale Research Letters, 2010, 5(8): 1279-1283.
DOI PMID |
12 | ZHANG L, ZHANG Y, KERSHAW S V, et al. Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths[J]. Nanotechnology, 2014, 25(10): 105704. |
13 | WATEKAR P R, LIN A X, JU S, et al. 1537 nm emission upon 980 nm pumping in PbSe quantum dots doped optical fiber[C]// OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference. February 24-28, 2008, San Diego, CA, USA. IEEE, 2008: 1-3. |
14 | JU S, WATEKAR P R, KIM C J, et al. Particle size control of PbTe quantum dots incorporated in the germano-silicate glass optical fiber by heat treatment[J]. Journal of Non-Crystalline Solids, 2010, 356(43): 2273-2276. |
15 |
JU S, WATEKAR P R, HAN W T. Fabrication of highly nonlinear germano-silicate glass optical fiber incorporated with PbTe semiconductor quantum dots using atomization doping process and its optical nonlinearity[J]. Optics Express, 2011, 19(3): 2599.
DOI PMID |
16 | XU L M, SHANG Y N, YANG J H, et al. Orbital-angular-momentum optical amplifier based on PbS-doped ring-core fiber[J]. Frontiers in Physics, 2020, 8: 198. |
17 | 徐灵敏, 商娅娜, 陈振宜. 基于PbS掺杂环形芯光纤的光放大器[J]. 光通信技术, 2020, 44(11): 35-38. |
XU L M, SHANG Y N, CHEN Z Y. Optical amplifier based on PbS doped ring core fiber[J]. Optical Communication Technology, 2020, 44(11): 35-38 (in Chinese). | |
18 |
PANG F F, SUN X L, GUO H R, et al. A PbS quantum dots fiber amplifier excited by evanescent wave[J]. Optics Express, 2010, 18(13): 14024-14030.
DOI PMID |
19 | 范美端, 严钰杨, 周 爽, 等. 基于介孔二氧化硅和硫化铅量子点结合的光纤放大器[J]. 光通信技术, 2021, 45(11): 59-62. |
FAN M D, YAN Y Y, ZHOU S, et al. Optical fiber amplifier based on composites of mesoporous silica and PbS quantum dots[J]. Optical Communication Technology, 2021, 45(11): 59-62 (in Chinese). | |
20 | 程 成, 张 航. 半导体纳米晶体PbSe量子点光纤放大器[J]. 物理学报, 2006, 55(8): 4139-4144. |
CHENG C, ZHANG H. A semiconductor nanocrystal PbSe quantum dot fiber amplifier[J]. Acta Physica Sinica, 2006, 55(8): 4139-4144 (in Chinese). | |
21 | 程 成, 林彦国, 严金华. 以UV胶为纤芯本底的CdSe/ZnS量子点光纤光致荧光光谱的传光特性[J]. 光子学报, 2011, 40(6): 888-893. |
CHENG C, LIN Y G, YAN J H. Propagation characteristic of photoluminescence spectra of CdSe/ZnS-quantum-dot doped fiber in an ultraviolet curable adhesive background[J]. Acta Photonica Sinica, 2011, 40(6): 888-893 (in Chinese). | |
22 | 吴昌斌. PbS量子点近红外宽带光纤通信放大器实验研究[D]. 杭州: 浙江工业大学, 2018. |
WU C B. Experimental study on PbS quantum dot near infrared broadband optical fiber communication amplifier[D]. Hangzhou: Zhejiang University of Technology, 2018 (in Chinese). | |
23 | CHENG C, BO J F, YAN J H, et al. Experimental realization of a PbSe-quantum-dot doped fiber laser[J]. IEEE Photonics Technology Letters, 2013, 25(6): 572-575. |
24 | BHARDWAJ A, HREIBI A, LIU C, et al. PbS quantum dots doped glass fibers for optical applications[C]// 2012 Conference on Lasers and Electro-Optics (CLEO). May 6-11, 2012, San Jose, CA, USA. IEEE, 2012: 1-2. |
25 | CHENG C, JIANG H L, MA D W, et al. An optical fiber glass containing PbSe quantum dots[J]. Optics Communications, 2011, 284(19): 4491-4495. |
26 | 程 成, 黄 吉, 徐 军. 熔融二次热处理优化制备近红外钠硼铝硅酸盐PbSe量子点荧光玻璃[J]. 光学学报, 2015, 35(5): 516004. |
CHENG C, HUANG J, XU J. Near-infrared PbSe quantum dots-doped sodium-aluminum-borosilicate silicate glass prepared optimally by melting method of two-step heat treatment[J]. Acta Optica Sinica, 2015, 35(5): 516004 (in Chinese). | |
27 | 程 成, 席子扬, 姚建华. PbSe量子点硅酸盐玻璃光纤的制备及光纤光致荧光光谱特性[J]. 光子学报, 2017, 46(6): 616001. |
CHENG C, XI Z Y, YAO J H. Preparation of PbSe-quantum-dot-doped-silicate glass fiber and the fiber photoluminescence spectrum[J]. Acta Photonica Sinica, 2017, 46(6): 616001 (in Chinese). | |
28 | 程 成, 汪方杰. 基于钠铝硼硅酸盐玻璃的近红外宽带PbSe量子点光纤放大器的实验实现[J]. 光学学报, 2018, 38(11): 1106002. |
CHENG C, WANG F J. Experimental realization of PbSe quantum-dot fiber amplifier in NIR broad-waveband based on sodium-aluminum-borosilicate silicate glass[J]. Acta Optica Sinica, 2018, 38(11): 1106002 (in Chinese). | |
29 | FANG Z J, ZHENG S P, PENG W C, et al. Fabrication and characterization of glass-ceramic fiber-containing Cr3+-doped ZnAl2O4 nanocrystals[J]. Journal of the American Ceramic Society, 2015, 98(9): 2772-2775. |
30 | 王 伟, 古 权, 陈钦鹏, 等. 中红外宽带荧光PbSe量子点掺杂玻璃光纤研究[J]. 中国激光, 2022, 49(1): 0101013. |
WANG W, GU Q, CHEN Q P, et al. Investigation of PbSe quantum dot-doped glass fibers with broadband mid-infrared emission[J]. Chinese Journal of Lasers, 2022, 49(1): 0101013 (in Chinese). | |
31 | 黄雄健. 近红外宽带荧光PbS量子点掺杂玻璃与光纤研究[D]. 广州: 华南理工大学, 2018. |
HUANG X J. Investigation of PbS quantum dot-doped glasses and glass fibers with broadband near-infrared emission[D]. Guangzhou: South China University of Technology, 2018 (in Chinese). | |
32 |
HREIBI A, GÉRÔME F, AUGUSTE J L, et al. Semiconductor-doped liquid-core optical fiber[J]. Optics Letters, 2011, 36(9): 1695-1697.
DOI PMID |
33 | 张 蕾. 胶体PbSe量子点掺杂液芯光纤的发光性质研究[D]. 长春: 吉林大学, 2014. |
ZHANG L. Study on the emission properties of colloidal PbSe quantum dot doped liquid core optical fibers[D]. Changchun: Jilin University, 2014 (in Chinese). | |
34 | CHENG C, ZHANG H. Characteristics of bandwidth, gain and noise of a PbSe quantum dot-doped fiber amplifier[J]. Optics Communications, 2007, 277(2): 372-378. |
35 | CHENG C. A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise[J]. Journal of Lightwave Technology, 2008, 26(11): 1404-1410. |
36 | BAHRAMPOUR A R, ROOHOLAMINI H, RAHIMI L, et al. An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier[J]. Optics Communications, 2009, 282(22): 4449-4454. |
37 | ZHANG L, ZHANG Y, WU H, et al. Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber[J]. Journal of Nanoparticle Research, 2013, 15(10): 2000. |
38 | 张 冰, 张 磊, 张 蕾. PbSe量子点液芯光纤的温度效应[J]. 发光学报, 2017, 38(5): 623. |
ZHANG B, ZHANG L, ZHANG L. Temperature effect on PbSe quantum dot-doped liquid core fiber[J]. Chinese Journal of Luminescence, 2017, 38(5): 623 (in Chinese). | |
39 | ZHANG L, ZHANG B, LI S, et al. Stimulated emission and optical gain in PbSe quantum dot-doped liquid-core optical fiber based on multi-exciton state[J]. Optics Communications, 2016, 369: 171-178. |
40 | JIANG C. Ultrabroadband gain characteristics of a quantum-dot-doped fiber amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 140-144. |
41 | HUANG W, CHI Y-Z, WANG X, et al. Tunable infrared luminescence and optical amplification in PbS doped glasses[J]. Chinese Physics Letters, 2008, 25(7): 2518-2520. |
42 | MAHRAN O, EL-Nohy N, IBRAHIM H. A numerical investigation of the gain profile of a PbSe quantum dot/Raman hybrid amplifier[J]. Optoelectronics and Advanced Materials-Rapid Communications, 2021, 15: 213-222. |
[1] | 杨江浩, 黄欣帅, 蓝陈慧, 魏钦华, 秦来顺. Cs4EuI6∶Sm近红外闪烁晶体的生长及发光性能研究[J]. 人工晶体学报, 2024, 53(4): 627-633. |
[2] | 陈沛然, 焦腾, 陈威, 党新明, 刁肇悌, 李政达, 韩宇, 于含, 董鑫. p-Si/n-Ga2O3异质结制备与特性研究[J]. 人工晶体学报, 2024, 53(1): 73-81. |
[3] | 陈绍华, 穆文祥, 张晋, 董旭阳, 李阳, 贾志泰, 陶绪堂. Ni掺杂β-Ga2O3单晶的光、电特性研究[J]. 人工晶体学报, 2023, 52(8): 1373-1377. |
[4] | 赵军一, 刘润泽, 楼逸扬, 霍永恒. 确定性固态量子光源基础材料与器件[J]. 人工晶体学报, 2023, 52(6): 960-981. |
[5] | 宫政, 汪西, 王卿, 陆枳岑, 潘尚可, 潘建国. 氧气对CsPbBr3单晶电学性能的影响[J]. 人工晶体学报, 2021, 50(10): 1913-1918. |
[6] | 王运锋;崔少博;郭爽;唐晓燕;宋金璠. Ce3+敏化YAG∶Nd3+单晶的近红外发光性能研究[J]. 人工晶体学报, 2020, 49(3): 407-411. |
[7] | 高雅;赵清华;史建芳;段倩倩;李刚;王开鹰. 溶胶-凝胶法制备CaCu3Ti4O12薄膜及其电学特性研究[J]. 人工晶体学报, 2016, 45(12): 2774-2777. |
[8] | 潘金根;王景;殷洁;潘尚可;潘建国. Nd3+掺杂Gd2O3的合成及近红外发光性能[J]. 人工晶体学报, 2015, 44(12): 3488-3492. |
[9] | 张丽红;王茺;杨杰;杨涛;杨宇. 偏压对Ge/Si单量子点电流分布的影响[J]. 人工晶体学报, 2012, 41(5): 1331-1336. |
[10] | 才玺坤;原子健;朱夏明;张兵坡;邱东江;吴惠桢. 磁控溅射气体参数对氧化铟薄膜特性的影响[J]. 人工晶体学报, 2011, 40(1): 17-21. |
[11] | 赵静;刘丽杰;蔡宁;薛俊明;赵颖. 掺杂量对ZnO陶瓷靶材性能影响的研究[J]. 人工晶体学报, 2009, 38(3): 772-776. |
[12] | 丁瑞钦;陈毅湛;朱慧群;黎扬钢;丁晓贵;杨柳;黄鑫钿;齐德备;谭军. 制备工艺对P型ZnO薄膜微观结构和电学特性的影响[J]. 人工晶体学报, 2008, 37(5): 1237-1241. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||