1 |
CHEN J, ZUO H S, WANG C Q, et al. Synthesis and electrochemical properties of ZnMn2O4 with hollow porous panpipe-like structure as anode material for Li-ion battery[J]. Electrochimica Acta, 2022, 426: 140780.
|
2 |
TOMAR A, Zulkifli, SINGH J, et al. Synergistic effect between ZnCo2O4 and Co3O4 induces superior electrochemical performance as anodes for lithium-ion batteries[J]. Physical Chemistry Chemical Physics, 2024, 26(17): 13152-13163.
|
3 |
LI M T, LIU R R, WANG L Y, et al. Iron-based bimetallic oxide carbon composites with superior lithium storage capabilities serve as anode in lithium-ion batteries[J]. Inorganica Chimica Acta, 2025, 574: 122399.
|
4 |
VO T N, NGUYEN T A, NGUYEN D M K, et al. Synthesis of ZnFe2O4 spinel nanoparticles at varying pH values and application in anode material for lithium-ion battery[J]. Ceramics International, 2023, 49(23): 38824-38834.
|
5 |
ZHANG D, ZHANG C Y, XU H S, et al. Ultrafast synthesis of spinel AMn2O4 (A=Co, Mn, Zn) nanopolyhedras and their composites applied to lithium ion battery anode[J]. Journal of Alloys and Compounds, 2024, 987: 174212.
|
6 |
DONG L S, WANG Z G, MI C, et al. Defect-rich hierarchical porous spinel MFe2O4 (M=Ni, Co, Fe, Mn) as high-performance anode for lithium ion batteries[J]. Materials Today Chemistry, 2024, 35: 101853.
|
7 |
LIU G F, HAN Q, LIU K R. Coating effect of Al2O3 on ZnMn2O4 anode surface for lithium-ion batteries[J]. Ionics, 2024, 30(8): 4509-4518.
|
8 |
YU K F, CHANG M S, YUE L F, et al. Submicron cubic ZnMn2O4 loaded on biomass porous carbon used as high-performance bifunctional electrode for lithium-ion and sodium-ion batteries[J]. Journal of Alloys and Compounds, 2024, 971: 172769.
|
9 |
WANG Y Y, XU S Y, ZHANG Y M, et al. Facile construction of porous ZnMn2O4 hollow micro-rods as advanced anode material for lithium ion batteries[J]. Nanomaterials, 2023, 13(3): 512.
|
10 |
LIU G F, HAN Q, LIU K R. Influence of preparation method on the performance of ZnMn2O4 anode material for lithium-ion batteries[J]. International Journal of Electrochemical Science, 2023, 18(3): 100059.
|
11 |
ZHOU P, ZHONG L P, LIU Z Y, et al. Porous ZnMn2O4 hollow microrods: facile construction and excellent electrochemical performances for lithium ion batteries[J]. Applied Surface Science, 2022, 578: 152087.
|
12 |
ZHANG T, GAO Y, YUE H J, et al. Convenient and high-yielding strategy for preparing nano-ZnMn2O4 as anode material in lithium-ion batteries[J]. Electrochimica Acta, 2016, 198: 84-90.
|
13 |
GAO Q L, YUAN Z X, DONG L X, et al. Reduced graphene oxide wrapped ZnMn2O4/carbon nanofibers for long-life lithium-ion batteries[J]. Electrochimica Acta, 2018, 270: 417-425.
|
14 |
CHENG S K, RU Q, GAO Y Q, et al. Anionic defect-enriched ZnMn2O4 nanorods with boosting pseudocapacitance for high-efficient and durable Li/Na storage[J]. Chemical Engineering Journal, 2021, 406: 126133.
|
15 |
CAI K X, LUO S H, CONG J, et al. Sol-gel synthesis of nano block-like ZnMn2O4 using citric acid complexing agent and electrochemical performance as anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2022, 909: 164882.
|
16 |
ZHANG J J, LU H Y, YAO T H, et al. Copper-induced formation of heterostructured Co3O4/CuO hollow nanospheres towards greatly enhanced lithium storage performance[J]. Chinese Chemical Letters, 2024, 35(2): 108450.
|
17 |
ZHANG Y, ZHANG P, XU Y, et al. Synthesis of pomegranate-shaped micron ZnMn2O4 with enhanced lithium storage capability[J]. Journal of Materiomics, 2021, 7(4): 699-707.
|
18 |
PITCHERI R, NUNNA G P, MERUM D, et al. Bifunctional ZnMn2O4/reduced graphene oxide microspheres with a needle-like surface architecture as effective electrodes for energy storage[J]. New Journal of Chemistry, 2023, 47(21): 10061-10069.
|
19 |
ZHONG X B, WANG X X, WANG H Y, et al. Ultrahigh-performance mesoporous ZnMn2O4 microspheres as anode materials for lithium-ion batteries and their in situ Raman investigation[J]. Nano Research, 2018, 11(7): 3814-3823.
|
20 |
RONG H B, XIE G T, CHENG S, et al. Hierarchical porous ZnMn2O4 microspheres architectured with sub-nanoparticles as a high performance anode for lithium ion batteries[J]. Journal of Alloys and Compounds, 2016, 679: 231-238.
|
21 |
ZHANG T, LIANG H, XIE C D, et al. Morphology-controllable synthesis of spinel zinc manganate with highly reversible capability for lithium ion battery[J]. Chemical Engineering Journal, 2017, 326: 820-830.
|
22 |
ZENG J S, REN Y B, WANG S B, et al. Hierarchical porous ZnMn2O4 microspheres assembled by nanosheets for high performance anodes of lithium ion batteries[J]. Inorganic Chemistry Frontiers, 2017, 4(10): 1730-1736.
|
23 |
LI H, YANG T B, JIN B, et al. Enhanced reversible capability of a macroporous ZnMn2O4/C microsphere anode with a water-soluble binder for long-life and high-rate lithium-ion storage[J]. Inorganic Chemistry Frontiers, 2019, 6(6): 1535-1545.
|
24 |
ZHAO P X, JIANG L, LI P S, et al. Tailored engineering of Fe3O4 and reduced graphene oxide coupled architecture to realize the full potential as electrode materials for lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2023, 634: 737-746.
|
25 |
ZHENG Z M, CHENG Y L, YAN X B, et al. Enhanced electrochemical properties of graphene-wrapped ZnMn2O4 nanorods for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(1): 149-154.
|
26 |
LIU Y W, SUN S W, TAN S, et al. Enhancing lithium storage performance of bimetallic oxides anode by synergistic effects[J]. Journal of Colloid and Interface Science, 2023, 641: 386-395.
DOI
PMID
|
27 |
KUMAR A, MUKESH P, LAKSHMI SAGAR G, et al. Synergistic boost in Fe3O4 anode performance for Li-ion batteries via Zn and Cu double doping and multi-walled carbon nanotube composite integration[J]. Journal of Electroanalytical Chemistry, 2024, 964: 118327.
|
28 |
XIE L L, XU J, LIU M L, et al. Ni-Co MOF-derived rambutan-like NiCo2O4/NC composite anode materials for high-performance lithium storage[J]. Journal of Alloys and Compounds, 2024, 987: 174221.
|