欢迎访问《人工晶体学报》官方网站,今天是 2025年8月22日 星期五 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (6): 1068-1077.DOI: 10.16553/j.cnki.issn1000-985x.2025.0025

• 研究论文 • 上一篇    下一篇

纳米空心立方体ZnMn2O4/rGO复合材料的储锂性能

张琳(), 蔡强浩, 代汉文, 汪燕鸣, 王飞()   

  1. 淮北师范大学化学与材料科学学院,淮北 235000
  • 收稿日期:2025-02-12 出版日期:2025-06-20 发布日期:2025-06-23
  • 通信作者: 王飞,博士,教授。E-mail:wangfeichem@126.com
  • 作者简介:张琳(2000—),女,安徽省人,硕士研究生。E-mail:1142878898@qq.com
  • 基金资助:
    安徽省高校自然科学研究项目(2023AH050316);国家级大学生创新训练计划项目(202410373029);校企联合研发项目(22100172)

Lithium Storage Properties of Nanosized Hollow Cubic ZnMn2O4/rGO Composite Materials

ZHANG Lin(), CAI Qianghao, DAI Hanwen, WANG Yanming, WANG Fei()   

  1. School of Chemistry and Materials Science,Huaibei Normal University,Huaibei 235000,China
  • Received:2025-02-12 Online:2025-06-20 Published:2025-06-23

摘要: ZnMn2O4是一种潜在的高比容量锂离子电池负极材料,但仍需提高其大电流充放电性能和循环寿命。本文通过简便的室温微乳液法和后续煅烧制备了边长约200 nm的ZnMn2O4空心立方体,由粒径30~50 nm的纳米颗粒相互紧密连接形成。为了提高材料的导电性,将ZnMn2O4与氧化石墨烯(GO)混合并热处理后得到ZnMn2O4/rGO复合材料。系统研究了复合材料的相组成、微结构、储锂性能和机理。作为锂离子电池负极材料,ZnMn2O4/rGO在0.1和4 A·g-1电流密度下的放电比容量分别达到1 193和620 mAh·g-1,在1 A·g-1电流密度下循环700次放电比容量保持806 mAh·g-1。其优异的倍率性能和循环稳定性源于ZnMn2O4和还原氧化石墨烯(rGO)的协同作用,较小的二次立方体/一次纳米颗粒尺寸利于Li+的短距离扩散,空心结构提供了材料锂化时体积膨胀的空间而使立方体保持结构完整;rGO不仅构建了材料的三维电子传输网络加快电子传输速度,而且也能缓冲嵌/脱锂时的体积变化而维持材料结构稳定。本研究为高性能金属氧化物类负极材料的制备提供了可行的策略。

关键词: 锂离子电池; 负极材料; ZnMn2O4; 还原氧化石墨烯; 微乳液法; 储锂性能

Abstract: ZnMn2O4 is a potential anode material for lithium-ion batteries with high specific capacity, but its high-rate performance and cycle life need to be improved. In this paper, ZnMn2O4 hollow cubes with an edge length of about 200 nm were prepared by a facile microemulsion method at room temperature followed by an annealing process. The cubes consist of interconnected nanoparticles with sizes of 30~50 nm. In order to improve the conductivity of the material, ZnMn2O4/rGO composite was prepared by mixing ZnMn2O4 with graphene oxide (GO) followed by a heat treatment. The phase composition, microstructure, lithium storage properties and mechanism of the composite were systematically investigated. As an anode material for lithium-ion batteries, ZnMn2O4/rGO delivers discharge capacities of 1 193 and 620 mAh·g-1 at current densities of 0.1 and 4 A·g-1, respectively. A discharge capacity of 806 mAh·g-1 can be achieved after 700 cycles at 1 A·g-1. The outstanding rate performance and cycle stability can be attributed to the synergistic effect of ZnMn2O4 and reduced graphene oxide (rGO). The smaller secondary cube/primary nanoparticle sizes enable the short Li+ diffusion distance. The hollow structure provides space for volume expansion of the material during lithiation, so that the cube can maintain its structural integrity. The rGO not only constructs a 3D electron transport network of the material to accelerate the electron transport speed, but also buffers the volume change during lithium insertion/extraction to maintain the structure stability of the material. This study provides a feasible strategy for the preparation of high-performance metal oxide anode materials.

Key words: lithium ion battery; anode material; ZnMn2O4; reduced graphene oxide; microemulsion method; lithium storage property

中图分类号: