
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (9): 1547-1557.DOI: 10.16553/j.cnki.issn1000-985x.2025.0078
韩懿博(
), 吉旭(
), 井群(
), 朱宣恺, 艾孜再姆·吾布力塔依尔, 赵文豪, 曹鑫佳
收稿日期:2025-04-14
出版日期:2025-09-20
发布日期:2025-09-23
通信作者:
吉旭,井群
作者简介:韩懿博(2004—),男,河南省人。E-mail:18736040762@163.com
基金资助:
HAN Yibo(
), JI Xu(
), JING Qun(
), ZHU Xuankai, AIZIZAIMU·WUBULITAYIER , ZHAO Wenhao, CAO Xinjia
Received:2025-04-14
Online:2025-09-20
Published:2025-09-23
Contact:
JI Xu, JING Qun
摘要: 稀土磷酸盐因具有较大的带隙和较好的光学特性,被认为是一种重要的紫外/深紫外光学材料。本文通过高通量筛选无机晶体结构数据库(ICSD),获得了磷酸钇(YPO4)晶体的两种相似结构Ⅰ(No.24514)、Ⅱ(No.133671)。运用第一性原理系统研究了Ⅰ和Ⅱ的电子结构和光学性质,利用计算机仿真研究了直接改变晶格常数来调控晶体YPO4带隙和双折射的可行性与可靠性。研究结果表明,晶格工程调控下晶体YPO4的双折射变化显著(在1 064 nm波长下,全维度压缩晶格至原来的70%,双折射改变高达0.052(Ⅰ)、0.057(Ⅱ);单轴(c轴)压缩晶格至70%,双折射改变达0.029(Ⅰ)、0.031(Ⅱ))。PO4和YO8基团均对晶体YPO4的双折射有突出贡献。P、O原子主导晶体YPO4双折射的走向,Y原子对双折射调控效率影响显著,在调控双折射的过程中发挥了非常关键的作用。晶格工程调控晶体双折射成效显著,此研究为新材料的设计研发和拓宽非线性光学材料应用场景提供新的思路。
中图分类号:
韩懿博, 吉旭, 井群, 朱宣恺, 艾孜再姆·吾布力塔依尔, 赵文豪, 曹鑫佳. YPO4双折射率增益机制和晶格工程调控策略研究[J]. 人工晶体学报, 2025, 54(9): 1547-1557.
HAN Yibo, JI Xu, JING Qun, ZHU Xuankai, AIZIZAIMU·WUBULITAYIER , ZHAO Wenhao, CAO Xinjia. Birefringence Enhancement Mechanism and Lattice Engineering Controlling Strategy of YPO4[J]. Journal of Synthetic Crystals, 2025, 54(9): 1547-1557.
| Compound | ICSD number | Space group number | Space group symbol | Lattice constant/Å | Crystal system | ||
|---|---|---|---|---|---|---|---|
| a | b | c | |||||
| Ⅰ | 24514 | 141 | I41/amd | 6.876 | 6.876 | 6.186 | Tetragonal |
| Ⅱ | 133671 | 141 | I41/amd | 6.907 | 6.907 | 6.035 | Tetragonal |
表1 YPO4晶体的晶格参数
Table 1 Lattice parameter of YPO4 crystal
| Compound | ICSD number | Space group number | Space group symbol | Lattice constant/Å | Crystal system | ||
|---|---|---|---|---|---|---|---|
| a | b | c | |||||
| Ⅰ | 24514 | 141 | I41/amd | 6.876 | 6.876 | 6.186 | Tetragonal |
| Ⅱ | 133671 | 141 | I41/amd | 6.907 | 6.907 | 6.035 | Tetragonal |
| Compound | Group | Distortion index | Compound | Group | Distortion index |
|---|---|---|---|---|---|
| Ⅰ | PO4 | 0 | Ⅱ | PO4 | 0 |
| YO8 | 0.001 32 | YO8 | 0.054 16 |
表2 结构Ⅰ和Ⅱ的畸变指数
Table 2 Distortion indices of structuresⅠ and Ⅱ
| Compound | Group | Distortion index | Compound | Group | Distortion index |
|---|---|---|---|---|---|
| Ⅰ | PO4 | 0 | Ⅱ | PO4 | 0 |
| YO8 | 0.001 32 | YO8 | 0.054 16 |
| Structure | Band gap/eV | Refractive index | Birefringence index | |
|---|---|---|---|---|
| no | ne | Δn(@1 064 nm) | ||
| Ⅰ | 5.995 3 | 1.824 80 | 1.916 30 | 0.091 50 |
| Ⅱ | 6.019 7 | 1.828 96 | 1.918 91 | 0.089 94 |
表3 化合物Ⅰ-Ⅱ的带隙和双折射率
Table 3 Band gaps and birefringence index of compounds Ⅰ-Ⅱ
| Structure | Band gap/eV | Refractive index | Birefringence index | |
|---|---|---|---|---|
| no | ne | Δn(@1 064 nm) | ||
| Ⅰ | 5.995 3 | 1.824 80 | 1.916 30 | 0.091 50 |
| Ⅱ | 6.019 7 | 1.828 96 | 1.918 91 | 0.089 94 |
图6 化合物Ⅰ-Ⅱ带隙(Eg)与双折射(Δn)图。(a)全维度调控;(b)单轴调控
Fig.6 Band gap (Eg) and birefringence (Δn) of compounds Ⅰ-Ⅱ. (a) Full-dimensional control; (b) uniaxial control
| Contribution | Structure | Scaling/% | Bond length/Å | ne | no | Δn |
|---|---|---|---|---|---|---|
| PO4 | Ⅰ | 100 | 1.548 10 | 1.629 | 1.535 | 0.094 |
| 90 | 1.527 93 | 1.622 | 1.545 | 0.077 | ||
| 80 | 1.498 47 | 1.608 | 1.531 | 0.077 | ||
| 70 | 1.449 14 | 1.573 | 1.506 | 0.067 | ||
| Ⅱ | 100 | 1.547 50 | 1.634 | 1.540 | 0.094 | |
| 90 | 1.526 80 | 1.617 | 1.542 | 0.075 | ||
| 80 | 1.497 57 | 1.635 | 1.551 | 0.083 | ||
| 70 | 1.446 71 | 1.592 | 1.527 | 0.065 | ||
| YO8 | Ⅰ | 100 | 2.288 05 | 1.745 | 1.626 | 0.120 |
| 90 | 2.200 48 | 1.727 | 1.636 | 0.090 | ||
| 80 | 2.080 60 | 1.716 | 1.626 | 0.090 | ||
| 70 | 1.954 11 | 1.679 | 1.602 | 0.076 | ||
| Ⅱ | 100 | 2.377 08 | 1.745 | 1.625 | 0.120 | |
| 90 | 2.202 65 | 1.726 | 1.634 | 0.092 | ||
| 80 | 2.082 53 | 1.717 | 1.624 | 0.092 | ||
| 70 | 1.953 62 | 1.676 | 1.604 | 0.072 |
表4 全维度压缩下RSAC分析折射率和双折射率(@1 064 nm)
Table 4 RSAC analysis of refractive index and birefringence index under full-dimensional compression (@1 064 nm)
| Contribution | Structure | Scaling/% | Bond length/Å | ne | no | Δn |
|---|---|---|---|---|---|---|
| PO4 | Ⅰ | 100 | 1.548 10 | 1.629 | 1.535 | 0.094 |
| 90 | 1.527 93 | 1.622 | 1.545 | 0.077 | ||
| 80 | 1.498 47 | 1.608 | 1.531 | 0.077 | ||
| 70 | 1.449 14 | 1.573 | 1.506 | 0.067 | ||
| Ⅱ | 100 | 1.547 50 | 1.634 | 1.540 | 0.094 | |
| 90 | 1.526 80 | 1.617 | 1.542 | 0.075 | ||
| 80 | 1.497 57 | 1.635 | 1.551 | 0.083 | ||
| 70 | 1.446 71 | 1.592 | 1.527 | 0.065 | ||
| YO8 | Ⅰ | 100 | 2.288 05 | 1.745 | 1.626 | 0.120 |
| 90 | 2.200 48 | 1.727 | 1.636 | 0.090 | ||
| 80 | 2.080 60 | 1.716 | 1.626 | 0.090 | ||
| 70 | 1.954 11 | 1.679 | 1.602 | 0.076 | ||
| Ⅱ | 100 | 2.377 08 | 1.745 | 1.625 | 0.120 | |
| 90 | 2.202 65 | 1.726 | 1.634 | 0.092 | ||
| 80 | 2.082 53 | 1.717 | 1.624 | 0.092 | ||
| 70 | 1.953 62 | 1.676 | 1.604 | 0.072 |
| Contribution | Structure | Scaling/% | Bond length/Å | ne | no | Δn |
|---|---|---|---|---|---|---|
| PO4 | Ⅰ | 100 | 1.548 10 | 1.629 | 1.535 | 0.094 |
| 90 | 1.542 04 | 1.616 | 1.530 | 0.086 | ||
| 80 | 1.532 41 | 1.598 | 1.525 | 0.074 | ||
| 70 | 1.520 44 | 1.590 | 1.533 | 0.057 | ||
| Ⅱ | 100 | 1.547 50 | 1.634 | 1.540 | 0.094 | |
| 90 | 1.540 74 | 1.647 | 1.552 | 0.096 | ||
| 80 | 1.530 93 | 1.632 | 1.550 | 0.082 | ||
| 70 | 1.518 33 | 1.587 | 1.536 | 0.051 | ||
| YO8 | Ⅰ | 100 | 2.288 05 | 1.745 | 1.626 | 0.120 |
| 90 | 2.281 63 | 1.740 | 1.622 | 0.118 | ||
| 80 | 2.274 19 | 1.735 | 1.619 | 0.115 | ||
| 70 | 2.212 46 | 1.729 | 1.621 | 0.108 | ||
| Ⅱ | 100 | 2.377 08 | 1.745 | 1.625 | 0.119 | |
| 90 | 2.282 96 | 1.740 | 1.621 | 0.119 | ||
| 80 | 2.273 11 | 1.733 | 1.619 | 0.114 | ||
| 70 | 2.200 93 | 1.728 | 1.624 | 0.104 |
表5 单轴压缩下RSAC分析折射率和双折射率(@1 064 nm)
Table 5 RSAC analysis of refractive index and birefringence index under uniaxial compression (@1 064 nm)
| Contribution | Structure | Scaling/% | Bond length/Å | ne | no | Δn |
|---|---|---|---|---|---|---|
| PO4 | Ⅰ | 100 | 1.548 10 | 1.629 | 1.535 | 0.094 |
| 90 | 1.542 04 | 1.616 | 1.530 | 0.086 | ||
| 80 | 1.532 41 | 1.598 | 1.525 | 0.074 | ||
| 70 | 1.520 44 | 1.590 | 1.533 | 0.057 | ||
| Ⅱ | 100 | 1.547 50 | 1.634 | 1.540 | 0.094 | |
| 90 | 1.540 74 | 1.647 | 1.552 | 0.096 | ||
| 80 | 1.530 93 | 1.632 | 1.550 | 0.082 | ||
| 70 | 1.518 33 | 1.587 | 1.536 | 0.051 | ||
| YO8 | Ⅰ | 100 | 2.288 05 | 1.745 | 1.626 | 0.120 |
| 90 | 2.281 63 | 1.740 | 1.622 | 0.118 | ||
| 80 | 2.274 19 | 1.735 | 1.619 | 0.115 | ||
| 70 | 2.212 46 | 1.729 | 1.621 | 0.108 | ||
| Ⅱ | 100 | 2.377 08 | 1.745 | 1.625 | 0.119 | |
| 90 | 2.282 96 | 1.740 | 1.621 | 0.119 | ||
| 80 | 2.273 11 | 1.733 | 1.619 | 0.114 | ||
| 70 | 2.200 93 | 1.728 | 1.624 | 0.104 |
| Atom | YPO4-Ⅰ | YPO4-Ⅱ | ||||||
|---|---|---|---|---|---|---|---|---|
| qxx | qyy | qzz | Δq | qxx | qyy | qzz | Δq | |
| Y | 3.857 | 3.857 | 4.165 | 0.308 | 3.853 | 3.853 | 4.165 | 0.312 |
| P | 3.354 | 3.354 | 4.386 | 1.032 | 3.354 | 3.354 | 4.379 | 1.025 |
| O | -1.033 | -2.573 | -2.138 | -1.105 | -1.033 | -2.571 | -2.136 | -1.103 |
表6 Ⅰ-Ⅱ的Born有效电荷分析
Table 6 Analysis of Born effective charges for structures Ⅰ-Ⅱ
| Atom | YPO4-Ⅰ | YPO4-Ⅱ | ||||||
|---|---|---|---|---|---|---|---|---|
| qxx | qyy | qzz | Δq | qxx | qyy | qzz | Δq | |
| Y | 3.857 | 3.857 | 4.165 | 0.308 | 3.853 | 3.853 | 4.165 | 0.312 |
| P | 3.354 | 3.354 | 4.386 | 1.032 | 3.354 | 3.354 | 4.379 | 1.025 |
| O | -1.033 | -2.573 | -2.138 | -1.105 | -1.033 | -2.571 | -2.136 | -1.103 |
图7 晶格工程 (scaling=70%)条件下化合物Ⅰ-Ⅱ的ELF图。(a)、(b)Ⅰ的ELF图;(c)、(d)Ⅱ的ELF图。其中(a)、(c)表示在全维度压缩下的ELF,(b)、(d)表示在单轴压缩下的ELF
Fig.7 ELF maps of compounds Ⅰ and Ⅱ under lattice engineering (scaling=70%). (a), (b) ELF of compound Ⅰ; (c), (d) ELF of compound Ⅱ. (a) and (c) represent ELF under isotropic compression, and (b) and (d) under uniaxial compression
图8 Ⅰ-Ⅱ的Born有效电荷变化(Δq)图。(a)全维度压缩;(b) 单轴压缩
Fig.8 Changes maps in Born effective charges (Δq) for Structures Ⅰ-Ⅱ. (a) Full-dimensional compression; (b) uniaxial compression
| [1] | FLOSSMANN F, SCHWARZ U T, MAIER M, et al. Polarization singularities from unfolding an optical vortex through a birefringent crystal[J]. Physical Review Letters, 2005, 95(25): 253901. |
| [2] |
LI M, PAN H F, TONG Y Q, et al. All-optical ultrafast polarization switching of terahertz radiation by impulsive molecular alignment[J]. Optics Letters, 2011, 36(18): 3633-3635.
DOI PMID |
| [3] | HLUBINA P, CIPRIAN D, KNYBLOVÁ L. Interference of white light in tandem configuration of birefringent crystal and sensing birefringent fiber[J]. Optics Communications, 2006, 260(2): 535-541. |
| [4] | SHI G Q, WANG Y, ZHANG F F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F[J]. Journal of the American Chemical Society, 2017, 139(31): 10645-10648. |
| [5] | WU H P, PAN S L, POEPPELMEIER K R, et al. K3B6O10Cl: a new structure analogous to perovskite with a large second harmonic generation response and deep UV absorption edge[J]. Journal of the American Chemical Society, 2011, 133(20): 7786-7790. |
| [6] | YANG Z H, TUDI A, LEI B H, et al. Enhanced nonlinear optical functionality in birefringence and refractive index dispersion of the deep-ultraviolet fluorooxoborates[J]. Science China Materials, 2020, 63(8): 1480-1488. |
| [7] | YANG Z, LEI B H, ZHANG W, et al. Module-analysis-assisted design of deep ultraviolet fluorooxoborates with extremely large gap and high structural stability[J]. Chemistry of Materials, 2019, 31(8): 2807-2813. |
| [8] | WU S F, WANG G F, XIE J L, et al. Growth of large birefringent α-BBO crystal[J]. Journal of Crystal Growth, 2002, 245(1/2): 84-86. |
| [9] |
LUO H T, TKACZYK T, DERENIAK E L, et al. High birefringence of the yttrium vanadate crystal in the middle wavelength infrared[J]. Optics Letters, 2006, 31(5): 616-618.
PMID |
| [10] | DEVORE J. Refractive indices of rutile and sphalerite[J]. Journal of the optical Society of America, 1951, 41(6):416-419. |
| [11] | CHEN C T, WU Y C, JIANG A D, et al. New nonlinear-optical crystal: LiB3O5 [J]. Josa B, 1989, 6(4): 616-621. |
| [12] |
CHEN X L, ZHANG B B, ZHANG F F, et al. Designing an excellent deep-ultraviolet birefringent material for light polarization[J]. Journal of the American Chemical Society, 2018, 140(47): 16311-16319.
DOI PMID |
| [13] |
DODGE M J. Refractive properties of magnesium fluoride[J]. Applied Optics, 1984, 23(12): 1980.
PMID |
| [14] | LAI H, BAO A, YANG Y, et al. UV luminescence property of YPO4:Re (Re= Ce3+, Tb3+)[J]. The Journal of Physical Chemistry C, 2008, 112(1): 282-286. |
| [15] | ZHANG L Y, WANG S L, YANG H W, et al. Study on optical performance and 532 nm laser damage of rapidly grown KDP crystals[J]. Optical Materials, 2021, 114: 110995. |
| [16] | XIONG L, CHEN J, LU J, et al. Monofluorophosphates: a new source of deep-ultraviolet nonlinear optical materials[J]. Chemistry of Materials, 2018, 30(21): 7823-7830. |
| [17] | ZHANG J H, CLARK D J, BRANT J A, et al. α-Li2ZnGeS4: a wide-bandgap diamond-like semiconductor with excellent balance between laser-induced damage threshold and second harmonic generation response[J]. Chemistry of Materials, 2020, 32(20): 8947-8955. |
| [18] | WANG Y, LIAN Z P, SU X, et al. Cs6RE2(PO4)4 (RE = Y and Gd): two new members of the alkali rare-earth double phosphates[J]. New Journal of Chemistry, 2015, 39(6): 4328-4333. |
| [19] | ZHANG B B, SHI G Q, YANG Z H, et al. Fluorooxoborates: beryllium-free deep-ultraviolet nonlinear optical materials without layered growth[J]. Angewandte Chemie (International Edition), 2017, 56(14): 3916-3919. |
| [20] | LI L, WANG Y, LEI B H, et al. A new deep-ultraviolet transparent orthophosphate LiCs2PO4 with large second harmonic generation response[J]. Journal of the American Chemical Society, 2016, 138(29): 9101-9104. |
| [21] | SHEN Y G, YANG Y, ZHAO S G, et al. Deep-ultraviolet transparent Cs2LiPO4 exhibits an unprecedented second harmonic generation[J]. Chemistry of Materials, 2016, 28(19): 7110-7116. |
| [22] | DE-YOREO J J, BURNHAM A K, WHITMAN P K. Developing KH2PO4 and KD2PO4 crystals for the world's most power laser[J]. International Materials Reviews, 2002, 47(3): 113-152. |
| [23] | OK K M, LEE D W, SMITH R I, et al. Time-resolved in situ neutron diffraction under supercritical hydrothermal conditions: a study of the synthesis of KTiOPO4 [J]. Journal of the America Chemical Society, 2012, 134(43): 17889-17891. |
| [24] | WANG J, ZHANG H, JIANG M, et al. Flux growth and external morphology of KTiOPO4 crystals[J]. Crystal Growth and Design, 2009, 9(2): 1190-1193. |
| [25] | ZHANG X, WANG L, ZHANG S, et al. Optical properties of the vacuum-ultraviolet nonlinear optical crystal—BPO4 [J]. Journal of the Optical Society of America B, 2011, 28(9): 2236-2239. |
| [26] | YU P, WU L M, ZHOU L J, et al. Deep-ultraviolet nonlinear optical crystals: Ba3P3O10X (X = Cl, Br)[J]. Journal of the American Chemical Society, 2014, 136(1): 480-487. |
| [27] | ZHAO S G, GONG P F, LUO S Y, et al. Deep-ultraviolet transparent phosphates RbBa2(PO3)5 and Rb2Ba3(P2O7)2 show nonlinear optical activity from condensation of [PO4]3- units[J]. Journal of the American Chemical Society, 2014, 136(24): 8560-8563. |
| [28] | RESHAK A H, KITYK I V, AULUCK S. Investigation of the linear and nonlinear optical susceptibilities of KTiOPO4 single crystals: theory and experiment[J]. The Journal of Physical Chemistry B, 2010, 114(50): 16705-16712. |
| [29] | YU H W, ZHANG W G, YOUNG J, et al. Design and synthesis of the beryllium-free deep-ultraviolet nonlinear optical material Ba3(ZnB5O10)PO4 [J]. Advanced Materials, 2015, 27(45): 7380-7385. |
| [30] | YU H W, CANTWELL J, WU H P, et al. Top-seeded solution crystal growth, morphology, optical and thermal properties of Ba3(ZnB5O10)PO4 [J]. Crystal Growth & Design, 2016, 16(7): 3976-3982. |
| [31] | MILLIGAN W O, MULLICA D F, BEALL G W, et al. Structural investigations of YPO4, ScPO4, and LuPO4 [J]. Inorganica Chimica Acta, 1982, 60: 39-43. |
| [32] | LEI B H, YANG Z H, YU H W, et al. Module-guided design scheme for deep-ultraviolet nonlinear optical materials[J]. Journal of the American Chemical Society, 2018, 140(34): 10726-10733. |
| [33] | XU F, PENG G, LIN C S, et al. Na3Sc2(PO4)2F3: rational design and synthesis of an alkali rare-earth phosphate fluoride as an ultraviolet nonlinear optical crystal with an enlarged birefringence[J]. Journal of Materials Chemistry C, 2020, 8(14): 4965-4972. |
| [34] | TRUKHIN A, BOATNER L A. Electronic structure of ScPO4 single crystals: optical and photoelectric properties[J]. Materials Science Forum, 1997, 239-241: 573-576. |
| [35] | JELLISON J G E, BOATNER L A, Chen C. Spectroscopic refractive indices of metalorthophosphates with the zircon-type structure[J]. Optical materials, 2000, 15(2): 103-109. |
| [36] | TUERHONG N, CHEN H H, HU M, et al. The enhanced bandgap and birefringence of rare-earth phosphates XPO4 (X = Sc, Y, La, and Lu): a first-principles investigation[J]. Physical Chemistry Chemical Physics, 2024, 26(21): 15751-15757. |
| [37] | CHU D D, HUANG Y, XIE C W, et al. Unbiased screening of novel infrared nonlinear optical materials with high thermal conductivity: long-neglected nitrides and popular chalcogenides[J]. Angewandte Chemie, 2023, 135(16): e202300581. |
| [38] | HAFNER J, KRESSE G. The Vienna AB-initio simulation program VASP: an efficient and versatile tool for studying the structural, dynamic, and electronic properties of materials[M]// Properties of Complex Inorganic Solids. Boston, MA: Springer US, 1997: 69-82. |
| [39] | GILLANI S S A, AHMAD R, ZEBA I, et al. Effect of external pressure on the structural stability, electronic structure, band gap engineering and optical properties of LiNbO3: an ab-initio calculation[J]. Materials Today Communications, 2020, 23: 100919. |
| [40] | YUAN Y F, ZHOU Y H, CHEN Z, et al. Pressure induced superconductivity in nonlinear optical crystal ZnGeP2 and its capture at ambient pressure[J]. Materials Today Physics, 2022, 25: 100707. |
| [41] | ZHANG B B, LEE M H, YANG Z H, et al. Simulated pressure-induced blue-shift of phase-matching region and nonlinear optical mechanism for K3B6O10X (X = Cl, Br)[J]. Applied Physics Letters, 2015, 106(3): 031906. |
| [42] | KOHN W. Nobel lecture: electronic structure of matter: wave functions and density functionals[J]. Reviews of Modern Physics, 1999, 71(5): 1253-1266. |
| [43] | PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[J]. Reviews of Modern Physics, 1992, 64(4): 1045-1097. |
| [44] | HAFNER J. Ab-initiosimulations of materials using VASP: density-functional theory and beyond[J]. Journal of Computational Chemistry, 2008, 29(13): 2044-2078. |
| [45] | WANG V, XU N, LIU J C, et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033. |
| [46] | ZAGORAC D, MÜLLER H, RUEHL S, et al. Recent developments in the inorganic crystal structure database: theoretical crystal structure data and related features[J]. Journal of Applied Crystallography, 2019, 52(5): 918-925. |
| [47] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
DOI PMID |
| [48] | KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. |
| [49] | BARONI S, DE GIRONCOLI S, CORSO A DAL, et al. Phonons and related crystal properties from density-functional perturbation theory[J]. Reviews of Modern Physics, 2001, 73(2): 515-562. |
| [50] | MOMMA K, IZUMI F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data[J]. Journal of Applied Crystallography, 2011, 44: 1272-1276. |
| [51] | BAUR W H. The geometry of polyhedral distortions. Predictive relationships for the phosphate group[J]. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1974, 30(5): 1195-121. |
| [52] | 黄 昆, 韩汝琦. 固体物理学[M]. 北京: 高等教育出版社, 1988. |
| HUANG K, HAN R Q. Solid state physics[M]. Beijing: Higher Education Press, 1988 (in Chinese). | |
| [53] | SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. |
| [54] | CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 2005, 220(5/6): 567-570. |
| [55] | JIN P Y, SHI X R, CUI X H, et al. Tellurium-oxygen group enhanced birefringence in tellurium phosphates: a first-principles investigation[J]. RSC Advances, 2020, 10(7): 4087-4094. |
| [56] | SPALDIN N A. A beginner's guide to the modern theory of polarization[J]. Journal of Solid State Chemistry, 2012, 195: 2-10. |
| [57] | JING Q, YANG G, HOU J, et al. Positive and negative contribution to birefringence in a family of carbonates: a Born effective charges analysis[J]. Journal of Solid State Chemistry, 2016, 244: 69-74. |
| [1] | 冷昊宁, 孙霄霄, 穆柏旭, 宁丽娜. KNbO3高压下相变行为的第一性原理研究[J]. 人工晶体学报, 2025, 54(9): 1584-1592. |
| [2] | 秦纪龙, 李向远, 张璐璐, 刘建新, 李瑞. 非化学计量比氧化钨(WO3-x)催化甲烷氧化制甲醇反应的第一性原理研究[J]. 人工晶体学报, 2025, 54(8): 1441-1453. |
| [3] | 王淳, 王坤, 宋相满, 任林, 张浩. 共掺杂β-Ga2O3导电性质第一性原理研究[J]. 人工晶体学报, 2025, 54(8): 1426-1432. |
| [4] | 崔健, 和志豪, 丁家福, 王云杰, 万俯宏, 李佳郡, 苏欣. 含d10电子构型钨酸盐结构与性能关系的第一性原理研究[J]. 人工晶体学报, 2025, 54(5): 841-849. |
| [5] | 郭满意, 吴佳兴, 杨帆, 王超, 王艳杰, 迟耀丹, 杨小天. ε-Ga2O3晶体及其本征缺陷的第一性原理研究[J]. 人工晶体学报, 2025, 54(2): 212-218. |
| [6] | 王云杰, 和志豪, 丁家福, 苏欣. X2(PO4)2(X=Ba、Pb)和XPO4(X=Y、Bi)中阳离子对结构框架影响及双折射率来源研究[J]. 人工晶体学报, 2025, 54(1): 85-94. |
| [7] | 丁家福, 和志豪, 王云杰, 苏欣. 通过硫代调控Ga、In、Tl磷酸盐光学性质的第一性原理研究[J]. 人工晶体学报, 2025, 54(1): 95-106. |
| [8] | 焦思慧, 吴红萍, 俞洪伟. CsBa2ScB8O16:首例结构中同时含有零维[B3O6]基元和一维B—O链的稀土硼酸盐[J]. 人工晶体学报, 2024, 53(9): 1550-1559. |
| [9] | 吴蕊, 胡洋, 唐荣芬, 阳倩, 王序, 吴怡逸, 聂登攀, 王环江. MOCVD生长ZnO薄膜的气相寄生反应路径研究[J]. 人工晶体学报, 2024, 53(9): 1608-1619. |
| [10] | 程佳佳, 吴梦琪, 杨敏, 王丽梅, 魏荣敏. [CoⅢ(DIEN)(N3)3]配合物的合成、晶体结构及量子化学研究[J]. 人工晶体学报, 2024, 53(8): 1409-1415. |
| [11] | 李琳, 张沛雄, 谭俊成, 朱思祁, 尹浩, 李真, 陈振强. Er掺杂PbF2晶体的局域团簇结构与光谱性能研究[J]. 人工晶体学报, 2024, 53(7): 1112-1120. |
| [12] | 雷慧茹, 张立宏. Pnnm-CrB4的高压物理性质探究[J]. 人工晶体学报, 2024, 53(7): 1231-1238. |
| [13] | 毛云虹, 赵春深. 6-氟-4-羟基-3-氧代-3,4-二氢喹喔啉-1(2H)-羧酸叔丁酯的合成、晶体结构及抗肿瘤活性研究[J]. 人工晶体学报, 2024, 53(7): 1257-1268. |
| [14] | 张博, 王云杰, 齐亚杰, 丁家福, 和志豪, 苏欣. 碱金属钼酸盐结构与性能关系的第一性原理研究[J]. 人工晶体学报, 2024, 53(6): 999-1007. |
| [15] | 汪涛, 张于浩, 殷海荣. 基于密度泛函理论的NaTaO3的结构设计及光催化抗菌性能研究[J]. 人工晶体学报, 2024, 53(6): 1051-1060. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS