[1] Lei W, Antoszewski J, Faraone L. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors[J]. Applied Physics Reviews, 2015, 2(4): 041303. [2] Kinch M A. The future of infrared; III-Vs or HgCdTe?[J]. Journal of Electronic Materials, 2015, 44(9): 2969-2976. [3] Rogalski A. History of infrared detectors[J]. Opto-Electronics Review, 2012, 20(3): 279-308. [4] Koestner R J, Liu H T, Schaake H F, et al. Improved structural quality of molecular-beam epitaxy HgCdTe films[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1989. [5] Sivananthan S, Chu X, Reno J, et al. Relation between crystallographic orientation and the condensation coefficients of Hg, Cd, and Te during molecular-beam-epitaxial growth of Hg1xCdxTe and CdTe[J]. Journal of Applied Physics, 1986, 60(4):1359-1363. [6] Mitsuhiro M, Fumiharu T, Kazutaka T, et al. Precise control of vertical-cavity surface-emitting laser structural growth using molecular beam epitaxy In situ reflectance monitor[J]. Japanese Journal of Applied Physics, 2006. [7] De Lyon T J, Rajavel R D, Jensen J E, et al. Heteroepitaxy of HgCdTe (112) infrared detector structures on Si (112) substrates by molecular-beam epitaxy[J]. Journal of Electronic Materials, 1996, 25(8): 1341-1346. [8] Badano G, Robin I C, Amstatt B, et al. Reduction of the dislocation density in molecular beam epitaxial CdTe (211) B on Ge (211)[J]. Journal of Crystal Growth, 2010, 312(10): 1721-1725. [9] Wenisch J, Eich D, Lutz H, et al. MBE growth of MCT on GaAs substrates at AIM[J]. Journal of electronic materials, 2012, 41(10): 2828-2832. [10] Benson J D, Farrell S, Brill G, et al. Dislocation analysis in (112) B HgCdTe/CdTe/Si[J]. Journal of Electronic Materials, 2011, 40(8): 1847-1853. [11] Lei W, Ren Y L, Madni I, et al. Low dislocation density MBE process for CdTe-on-GaSb as an alternative substrate for HgCdTe growth[J]. Infrared Physics & Technology, 2018, 92: 96-102. [12] Jacobs R N, Stoltz A J, Benson J D, et al. Analysis of mesa dislocation gettering in HgCdTe/CdTe/Si (211) by scanning transmission electron microscopy[J]. Journal of Electronic Materials, 2013, 42(11): 3148-3155. [13] Vilela M F, Olsson K R, Norton E, et al. High-performance M/LWIR dual-band HgCdTe/Si focal-plane arrays[J]. Journal of Electronic Materials, 2013, 42(11): 3231-3238. [14] Hall D N, Baker I, Finger G, et al. Towards the next generation of L-APD MOVPE HgCdTe arrays: beyond the SAPHIRA 320×256[J]. Proceedings of SPIE, 2016. [15] Reddy M, Jin X, Lofgreen D D, et al. Demonstration of high-quality MBE HgCdTe on 8-inch wafers[J]. Journal of Electronic Materials, 2019, 48(10): 6040-6044. [16] Blank R, Beletic J W, Cooper D E, et al. Development and production of the H4RG-15 focal plane array[J]. Proceedings of SPIE, 2012. [17] Starr B, Mears L, Fulk C, et al. RVS large format arrays for astronomy[J]. Proceedings of SPIE, 2016. [18] Lee D, Carmody M, Piquette E, et al. High-operating temperature HgCdTe: a vision for the near future[J]. Journal of Electronic Materials, 2016, 45(9): 4587-4595. [19] Reddy M, Peterson J M, Lofgreen D D, et al. HgCdTe growth on 6 cm×6 cm CdZnTe substrates for large-format dual-band infrared focal-plane arrays[J]. Journal of Electronic Materials, 2010, 39(7):974-980. [20] Johnson S M, Rhiger D R, Rosbeck J P, et al. Effect of dislocations on the electrical and optical properties of long-wavelength infrared HgCdTe photovoltaic detectors[J]. Journal of Vacuum Science & Technology B, 1992, 10(4): 1499-1506. [21] Gopal V, Gupta S. Effect of dislocations on the zero-bias resistance-area product, quantum efficiency, and spectral response of LWIR HgCdTe photovoltaic detectors[J]. IEEE Transactions on Electron Devices, 2003, 50(5): 1220-1226. |