[1] Pankaow N, Thainoi S, Panyakeow S, et al. Surface morphology and photoluminescence of InGaAs quantum rings grown by droplet epitaxy with varying In0.5Ga0.5 droplet amount[J]. J Crystal Growth, 2011, 323(1): 282-285. [2] Nemcsics A, Toth L, Dobos L, et al. Composition of the “GaAs” quantum dot grown by droplet epitaxy[J]. Superlattices Microstruct, 2010, 48(4): 351-357. [3] Ohtake A, Mano T, Hagiwara A, et al. Self-assembled growth of Ga droplets on GaAs(001): role of surface reconstructions[J]. Crystal Growth & Design, 2014, 14(6): 3110-3115. [4] Tung K H P, Gao H W, Xiang N. Time evolution of self-assembled GaAs quantum rings grown by droplet epitaxy[J]. Journal Crystal Growth. 2013, 371: 117-121. [5] Liao X Z, Zhu Y T, Qiu Y M, et al, Quantum dot/substrate interaction in InAs/In0.53Ga0.47As/InP(001)[J]. Appl Phys Lett, 2004, 84: 511. [6] Stranski I N, Krastanow L, Akad S, et al. Wien, Math-Naturwiss[M]. Kl, Abt. 2A, 1937, 146: 797. [7] Koguchi N. New selective molecular-beam epitaxial growth method for direct formation of GaAs quantum dots[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1993, 11(3): 787. [8] Chen Z B, Lei W, Chen B, et al. Elemental diffusion during the droplet epitaxy growth of In(Ga)As/GaAs(001) quantum dots by metal-organic chemical vapor deposition[J]. Appl Phys Lett, 2014, 104(2): 022108. [9] Stevens M A, Tomasulo S, Maximenko S, et al. Surface diffusion measurements of In on InGaAs enabled by droplet epitaxy[J]. J Appl Phys, 2017, 121(19): 195302. [10] Zocher M, Heyn Ch, andHansen W. Alloying during local droplet etching of AlGaAs surfaces with aluminium[J]. J Appl Phys, 2019, 125(2): 025306. [11] Zheng C X, Hannikainen K, Niu Y R, et al. Mapping the surface phase diagram of GaAs(001) using droplet epitaxy[J]. Phys Rev Mater, 2019, 3(12): 124603. [12] Spirina A A, Shwartz N L. Metal droplet formation and motion during the III-V semiconductor evaporation[J]. Materials Science in Semiconductor Processing, 2019, 100: 319-325. [13] 周 勋,杨再荣,罗子江,等.反射式高能电子衍射实时监控的分子束外延生长GaAs 晶体衬底温度校准及表面相变的研究[J].物理学报,2011,60(1):016109. [14] Alonso-Gonzalez P, Fuster D, Gonzalez L, et al. Low density InAs quantum dots with control in energy emission and top surface location[J]. Appl Phys Lett, 2008, 93(18): 183106. [15] Heyn, Ch, Stemmann, A, Hansen, W. Nanohole formation on AlGaAs surfaces by local droplet etching with gallium[J]. J Crystal Growth, 2009, 311(7): 1839. [16] Galitsyn Y D, Mansurov D, Mansurov V G, et al. Role of lateral interaction in the homoepitaxy of GaAs on the (001)-β(2×4) surface[J]. JETP Lett, 2007, 86(7): 482. [17] Galitsyn Y G. Critical phenomena in the β-(2×4) → α-(2×4) reconstruction transition on the (001) GaAs surface[J]. JETP Lett, 2005, 81(12): 629. [18] Placidi E, Arciprete F, Fanfoni M, et al. InAs/GaAs(001) epitaxy: kinetic effects in the two-dimensional to three-dimensional transition[J]Journal of Physics Condensed Matter, 2007, 19(22): 225006. [19] Galitsyn Y G, Dmitriev D V, Mansurov V G, et al. Asymmetric c(4×4) → γ(2×4) reconstruction phase transition on the (001) GaAs surface[J]. JETP Lett, 2007, 84(9): 505. [20] Sanguinetti S, Bietti S, Koguchi N. In Molecular Beam Epitaxy[M]. Amsterdam: Elsevier,2018. [21] Balakirev S V, Solodovnik M S, Ageev O A. Hybrid analytical-Monte Carlo model of In/GaAs(001) droplet epitaxy: theory and experiment[J]. Phys Status Solidi B, 2018, 255: 1700360. [22] Lee J H, Wang Zh M, Salamo G J, Observation of change in critical thickness of In droplet formation on GaAs(100)[J]. Journal of Physics. Condensed Matter, 2007, 19(17):176223. [23] Burshtein A I. Molecular Physics[M]. Nauka, Novosibirsk, 1986 [in Russian]. [24] Lyamkina A A, Dmitriev D V, Galitsyn Y G, et al. The investigation of intermediate stage of template etching with metal droplets by wetting angle analysis on (001) GaAs surface[J]. Nanoscale Res Lett, 2011, 6(1):42-42. [25] Volmer M, Weber A Z. Nucleus formation in supersaturated systems[J]. Phys Chem, 1926, 119: 277-301. [26] Wu J, Wang Z M. Droplet epitaxy for advanced optoelectronic materials and devices[J]. J Phys D: Appl Phys, 2014, 47(17): 173001. |