[1] Zhao X, Wang L, Xu X, et al. Fabrication and photocatalytic properties of novel ZnO/ZnAl2O4 nanocomposite with ZnAl2O4 dispersed inside ZnO network[J]. AIChE Journal, 2012, 58(2): 573-582. [2] 朱学多.金属催化臭氧化催化剂的制备与性能研究[D].哈尔滨:哈尔滨工业大学,2006. [3] 吴永胜.沉降法处理氟涂料废水[J].产业用纺织品,2001,19(10):33-35. [4] 夏俊方,高麒麟.混凝沉降法处理洗衣废水的实验研究[J].四川环境,2005,24(2):18-20. [5] 何小娟,杨再鹏,党海燕,等.膜技术在水处理中的应用及膜材料的研究进展[J].化工环保,2004,24(3):185-189. [6] 唐登勇,郑 正,苏东辉,等.活性炭纤维在水处理中的应用研究新进展[J].净水技术,2003,22(5):23-25. [7] 姜军清,黄卫红,陆晓华.活性炭纤维处理含酚废水的研究[J].工业水处理,2001,21(3):20-22. [8] 马丽斯,田晓霞.合成条件对Bi2MoO6-ZnO纳米复合材料光催化性能的影响[J].功能材料,2020,51(7):7001-7006. [9] Theerthagiri J, Senthil R, Priya A, et al. Photocatalytic and photoelectrochemical studies of visible-light active α-Fe2O3-g-C3N4 nanocomposites[J]. RSC Advances, 2014, 4(72): 38222-38229. [10] Jayaraman T, Raja S, Priya A, et al. Synthesis of a visible-light active V2O5-g-C3N4 heterojunction as an efficient photocatalytic and photoelectrochemical material[J]. New Journal of Chemistry, 2015, 39(2): 1367-1374. [11] Theerthagiri J, Senthil R, Malathi A, et al. Synthesis and characterization of a CuS-WO3 composite photocatalyst for enhanced visible light photocatalytic activity[J]. RSC Adv, 2015, 5(65): 52718-52725. [12] Nakamura R, Tanaka T, Nakato Y. Oxygen photoevolution on a tantalum oxynitride photocatalyst under visible-light irradiation: how does water photooxidation proceed on a metal-oxynitride surface[J]. Journal of Physical Chemistry B, 2005, 109(18): 8920-8927. [13] He Y, Zhang L, Wang X, et al. Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3-g-C3N4 composite under visible light irradiation[J]. RSC Adv, 2014, 4(26): 13610-13619. [14] Li H Y, Li J, Xu C C, et al. Hierarchically porous MoS2/CoAl-LDH/HCF with synergistic adsorption-photocatalytic performance under visible light irradiation[J]. Journal of Alloys and Compounds, 2017, 698: 852-862. [15] Zheng G Y, Wu C H, Wang J L, et al. Facile synthesis of few-layer MoS2 in MgAl-LDH layers for enhanced visible-light photocatalytic activity[J]. RSC Advances, 2019, 9(42): 24280-24290. [16] 曹仕秀.二硫化钨(WS2)纳米材料的水热合成与光吸收性能研究[D].重庆:重庆大学,2015. [17] Vattikuti S V P, Ngo I L, Byon C. Physicochemcial characteristic of CdS-anchored porous WS2 hybrid in the photocatalytic degradation of crystal violet under UV and visible light irradiation[J]. Solid State Sciences, 2016, 61: 121-130. [18] Nandi D K, Sen U K, Dhara A, et al. Intercalation based tungsten disulfide (WS2) Li-ion battery anode grown by atomic layer deposition[J]. Rsc Advances, 2016, 6(44): 38024-38032. [19] Altavilla C, Sarno M, Ciambelli P. A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS2@oleylamine (M=Mo, W)[J]. Chemistry of Materials, 2011, 23(17): 3879-3885. [20] Yu S J, Wang J, Song S, et al. One-pot synthesis of graphene oxide and Ni-Al layered double hydroxides nanocomposites for the efficient removal of U(VI) from wastewater[J]. Science China-Chemistry, 2017, 60(3): 415-422. [21] Yang S X, Wang L Y, Zhang X D, et al. Enhanced adsorption of congo red dye by functionalized carbon nanotube/mixed metal oxides nanocomposites derived from layered double hydroxide precursor[J]. Chemical Engineering Journal, 2015, 275: 315-321. [22] Tan S, Pumera M. Bottom-up electrosynthesis of highly active tungsten sulfide (WS3-x) films for hydrogen evolution[J]. ACS Applied Materials & Interfaces, 2016, 8(6): 3948-3957. [23] Zheng G Y, Wu C H, Wang J L, et al. Space-confined effect one-pot synthesis of γ-AlO(OH)/MgAl-LDH heterostructures with excellent adsorption performance[J]. Nanoscale Research Letters, 2019, 14(1):1-12. |