[1] Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting[J]. Nature Reviews Chemistry, 2017, 1(1): 1-13. [2] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews, 2009, 38: 253-278. [3] Huang J, Yue P F, Wang L, et al. A review on tungsten-trioxide-based photoanodes forwater oxidation[J]. Chinese Journal of Catalysis, 2019, 40: 1408-1420. [4] Wang Y, Li F, Zhou X, et al. Highly efficient photoelectrochemical water splitting with an immobilized molecular Co4O4 cubane catalyst[J]. Angewandte Chemie International Edition, 2017, 56(24): 6911-6915. [5] Grtzel M. Photoelectrochemical cells[J]. Nature, 2001, 414: 338-344. [6] Hodes G, Cahen D, Manassen J. Tungsten trioxide as a photoanode for Photoelectrochemical cells (PEC)[J]. Nature, 1976, 260: 312-313. [7] Chandra D, Saito K, Yagi M. Tunable mesoporous structure of crystalline WO3 photoanode toward efficient visible-light-driven water oxidation[J]. Sustainable Energy Fuels, 2018, 6: 16838-16846. [8] 肖永昊.三氧化钨基纳米结构光阳极的制备及其光电化学性能研究[D].广州:华南理工大学,2018. [9] Li D, Takeuchi R, Chandra D, et al. Visible light-driven water oxidation on an in situ N2-Intercalated WO3 nanorod photoanode synthesized by a dual-functional structure-directing agent[J]. ChemsusChem, 2018, 11(7): 1151-1156. [10] Sohani T, Tayyebi A, Hong H, et al. A novel growth control of nanoplates WO3 photoanodes with dual oxygen and tungsten vacancies for efficient photoelectrochemical water splitting performance[J]. Solar Energy Materials and Solar Cells, 2019, 191:39-49. [11] 王振兴. 三氧化钨复合薄膜的制备及其光电性能研究[D].长春:吉林大学, 2019. [12] Gu Y J, Zheng W Q, Bu Y Y. Facile preparation of nanoflower structured WO3 thin film on etched titanium substrate with high photoelectrochemical performance[J]. Journal of Electroanalytical Chemistry, 2019, 833(15): 54-62. [13] 王 杰. 三氧化钨光阳极制备优化及光电化学性质研究[D]. 南京:南京邮电大学, 2018. [14] Cen J J, Wu Q Y, Yan D H, et al. New aspects of improving the performance of WO3 thin films for photoelectrochemical water splitting by tuning the ultrathin depletion region[J]. RSC Advances, 2019, 5(2): 899-905. [15] Chandra D, Saito K, Yagi M. Crystallization of tungsten trioxide having small mesopores:highly efficient photoanode for visible-light-driven water oxidation[J]. Angewandte Chemie International Edition, 2013, 52(48): 12606-12609. [16] 于 婷.介孔氧化钨材料的制备与表征研究[D].大庆:东北石油大学,2012. [17] 姜 霞,李 雯,郭云龙,等. 生物模板法制备金属氧化物及其催化应用研究进展[J].化工进展,2019,38(1):485-494. [18] Wei H G, Yan X R, Wu S J, et al. Electropolymerized polyaniline stabilized tungsten oxide nanocomposite films:electrochromic behavior and electrochemical energy Storage[J]. The Journal of Physical Chemistry C, 2012, 116: 25052-25064. [19] Gao J, Luo B D, Lin H L, et al. Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties[J]. Applied Catalysis B:Environmental, 2012, 111-112: 288-296 [20] Kanan S M, Tripp C P. Synthesis, FTIR studies and sensor properties of WO3 powders[J]. Current Opinion in Solid State and Materials Science, 2007, 11: 19-27. [21] Krasovec U O, Vuk A S, Orel B. IR Spectroscopic studies of charged-discharged crystalline WO3 films[J]. Electrochimica Acta, 2001, 46: 1921-1929. [22] Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61: 14095-14107. [23] Santato C, Odziemkowski M, Ulmann M, et al. Crystallographically oriented mesoporous WO3 films:synthesis, characterization, and applications [J]. Journal of the American Chemical Society, 2001, 123(43): 10639-10649. [24] Kim J Y, Moon J K, Lee T W, et al. Synthesis of transparent mesoporous tungsten trioxide films with enhanced photoelectrochemical response: Application to unassisted solar water splitting inverse opal tungsten trioxide films with mesoporous skeletons: synthesis and photoelectrochemical responses[J]. Chemical Communications, 2012, 48: 11939-11941. [25] 余 勇.氧化钨介孔材料的制备与表征[D].长沙:中南大学,2009. [26] Santato C, Ulmann M, Augustynski J.Photoelectrochemical properties of nanostructured tungsten trioxide films[J]. Journal of Physical Chemistry B, 2001, 105(5): 936-940. |