[1] Lorwanishpaisarn N, Kasemsiri P, Posi P, et al. Characterization of paraffin/ultrasonic-treated diatomite for use as phase change material in thermal energy storage of buildings[J]. Journal of Thermal Analysis and Calorimetry, 2017, 128(3):1293-1303. [2] Kenisarin M, Mahkamov K. Solar energy storage using phase change materials[J]. Renewable and Sustainable Energy Reviews, 2007, 11(9): 1913-1965. [3] Li G, Qian S X, Lee H, et al. Experimental investigation of energy and exergy performance of short term adsorption heat storage for residential application[J]. Energy, 2014, 65: 675-691. [4] Xu B W, Li Z J. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage[J]. Applied Energy, 2013, 105: 229-237. [5] Konuklu Y, Ersoy O. Preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage[J]. Applied Thermal Engineering, 2016, 107: 575-582. [6] Sarı A, Karaipekli A. Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage[J]. Materials Chemistry and Physics, 2008, 109(2/3): 459-464. [7] Murray H H. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview[J]. Applied Clay Science, 2000, 17(5/6): 207-221. [8] Cheng H F, Liu Q F, Yang J, et al. The thermal behavior of kaolinite intercalation complexes-a review[J]. Thermochimica Acta, 2012, 545: 1-13. [9] Cheng H F, Zhou Y, Liu Q F. Kaolinite nanomaterials: preparation, properties and functional applications[J]. Nanomaterials from Clay Minerals, 2019: 285-334. [10] Sarı A. Fabrication and thermal characterization of kaolin-based composite phase change materials for latent heat storage in buildings[J]. Energy and Buildings, 2015, 96: 193-200. [11] Lv P, Liu C Z, Rao Z H. Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change materials[J]. Applied Energy, 2016, 182: 475-487. [12] Li C C, Fu L J, Ouyang J, et al. Kaolinite stabilized paraffin composite phase change materials for thermal energy storage[J]. Applied Clay Science, 2015, 115: 212-220. [13] Song S K, Dong L J, Zhang Y, et al. Lauric acid/intercalated kaolinite as form-stable phase change material for thermal energy storage[J]. Energy, 2014, 76: 385-389. [14] Liu S Y, Yang H M. Composite of coal-series kaolinite and capric-lauric acid as form-stable phase-change material[J]. Energy Technology, 2015, 3(1): 77-83. [15] Liu S Y, Yang H M. Stearic acid hybridizing coal-series kaolin composite phase change material for thermal energy storage[J]. Applied Clay Science, 2014, 101: 277-281. [16] Kuroda Y, Ito K, Itabashi K, et al. One-step exfoliation of kaolinites and their transformation into nanoscrolls[J]. Langmuir, 2011, 27(5): 2028-2035. [17] Mako E, Kovacs A, Katona R, et al. Characterization of kaolinite-cetyltrimethylammonium chloride intercalation complex synthesized through eco-friend kaolinite-urea pre-intercalation complex[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 508: 265-273. [18] 程宏飞,贾晓辉,豪日娃,等.黏土矿物-十六烷基三甲基氯化铵作用机理及其结构[J].人工晶体学报,2018,47(12):2547-2554. [19] Li J W, Zuo X C, Zhao X G, et al. Stearic acid hybridizing kaolinite as shape-stabilized phase change material for thermal energy storage[J]. Applied Clay Science, 2019, 183: 105358. [20] 李晓光.高岭石的自适应变形及其纳米卷结构研究[D].北京:中国矿业大学(北京),2018:83-84. [21] Matusik J, Gawe A, Bielańska E b, et al. The effect of structural order on nanotubes derived from kaolin-group minerals[J]. Clays & Clay Minerals, 2009, 57(4): 452-464. [22] Matusik J, Wisla-Walsh E, Gawel A, et al. Surface area and porosity of nanotubes obtained from kaolin minerals of different structural order[J]. Clays and Clay Minerals, 2011, 59(2): 116-135. [23] Liu Q F, Li X G, Cheng H F. Insight into the self-adaptive deformation of kaolinite layers into nanoscrolls[J]. Applied Clay Science, 2016, 124-125: 175-182. [24] Li C, Fu L, Ouyang J, et al. Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage[J]. Sci Rep, 2013, 3: 1908. [25] Karaman S, Karaipekli A, Sarı A, et al. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2011, 95(7): 1647-1653. [26] Ali Memon S, Yiu Lo T, Shi X, et al. Preparation, characterization and thermal properties of Lauryl alcohol/kaolin as novel form-stable composite phase change material for thermal energy storage in buildings[J]. Applied Thermal Engineering, 2013, 59(1): 336-347. [27] 程宏飞,刘庆贺,贾晓辉,等.高岭石/甲醇复合物结构及其脱嵌动力学研究[J].人工晶体学报,2018,47(2):389-396. |