[1] Gu M, Zhang Q, Lamon S. Nanomaterials for optical data storage[J]. Nature Reviews Materials, 2016, 1: 16070. [2] Tuma Tomas, Pantazi Angeliki, Le Gallo Manuel, et al. Stochastic phase-change neurons[J]. Nature nanotechnology, 2016, 11(8): 693-699. [3] Zhang W, Mazzarello R, Wuttig M, et al. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing[J]. Nature Reviews Materials, 2019, 4(3): 150-168. [4] Krebs D, Raoux S, Rettner C T, et al. Threshold field of phase change memory materials measured using phase change bridge devices[J]. Applied Physics Letters, 2009, 95(8):082101. [5] Zhou X, Kalikka J, Ji X, et al. Phase-change memory materials by design:a strain engineering approach[J]. Advanced Materials, 2016, 28(15): 3007-3016. [6] 陈念科.相变存储半导体的电子规律与存储过程的第一性原理研究[D].长春:吉林大学,2018:3-6. [7] 万琪健.SiNx掺杂SbTe相变存储材料研究[D].上海:上海交通大学,2012:32-43. [8] Ha Y H, Yi J H, Horii H, et al. An edge contact type cell for phase change RAM featuring very low power consumption[C]. Symposium on Vlsi Technology. IEEE, 2003. [9] Chen Y F, Song Z T, Chen X G, et al. RESET current reduction for phase change memory based on standard 0.13-μm CMOS technology[J]. International Workshop on Automobile, Power and Energy Engineering, 2011, 16: 401-406. [10] 李晓云,陈后鹏,雷 宇,等.一种基于相变存储器的高速读出电路设计[J].上海交通大学学报,2019,53(8):936-942. [11] Jiao F Y, Chen B, Keyuan Ding, et al. Monatomic 2D phase-change memory for precise neuromorphic computing[J]. Applied Materials Today, 2020, 20: 100641. [12] Banerjee W. Challenges and applications of emerging nonvolatile memory devices[J]. Electronics, 2020, 9(6): 1029. [13] Raoux S, Wuttig M. Phase change materials: science and applications[M]. New York: Springer, 2009: 305-307. [14] Meena J, Sze S, Chand U, et al. Overview of emerging nonvolatile memory technologies[J]. Nanoscale Research Letters, 2014, 9(1): 526. [15] Wong H S P, Raoux S, Kim S, et al. Phase change memory[J]. Proceedings of the IEEE, 2010, 98(12): 2201-2227. [16] Xiong F, Bae M-H, Dai Y, et al. Self-aligned nanotube-nanowire phase change memory[J]. Nano Lett, 2013, 13(2): 464-469. [17] Mojumder N N, Abraham D W, Roy K, et al. Magnonic spin-transfer torque MRAM with low power, high speed, and error-free switching[J]. IEEE Transactions on Magnetics Mag, 2011, 48(6): 2016-2024. [18] Wu L, Chen Y F, Cai D L, et al. RESET current optimization for phase change memory based on the sub-threshold slope[J]. Materials Science in Semiconductor Processing, 2019, 97: 11-16. [19] Burr G W, Breitwisch M J, Franceschini M, et al. Phase change memory technology[J]. Journal of Vacuum ence & Technology B Microelectronics & Nanometer Structures, 2010, 28(2): 223-262. [20] Pieterson L V, Lankhorst M H R, Schijndel M V, et al. Phase-change recording materials with a growth-dominated crystallization mechanism: A materials overview[J]. Journal of Applied Physics, 2005, 97(8): 254. [21] Kolobov A V, Fons P, Frenkel A I, et al. Understanding the phase-change mechanism of rewritable optical media[J]. Nature Materials, 2004, 3(10): 703. [22] 王国祥.新型Sb-Te基薄膜制备与相变性能研究[D].上海:中国科学院上海技术物理研究所,2014:119-133. [23] 宋志棠.相变存储器[M].北京:科学出版社, 2010:81-83. [24] 宋志棠,宋三年.一种相变存储器及其制作方法:CN110335942A[P].2019-10-15. [25] Song S, Song Z, Liu B, et al. Performance improvement of phase-change memory cell with Ge2Sb2Te5-HfO2 composite films[J]. Applied Physics A, 2010, 99(4): 767-770. [26] Huang Y H, Chen H A, Wu H H, et al. Forming-free, bi-directional polarity conductive-bridge memory devices with Ge2Sb2Te5 solid-state electrolyte and Ag active electrode[J]. Journal of Applied Physics, 2015, 117(1): 2632-708. [27] 吕业刚,张 倩.一种兼具高速和高数据保持力的二氧化钒-Sb薄膜材料及其制备方法:CN110176536A[P].2019-08-27. [28] 西安交大等在相变存储材料设计领域取得重要进展[J].家电科技,2019(4):24. [29] Hu S, Liu B, Li Z, et al. Identifying optimal dopants for SbTe phase-change material by high- throughput ab initio calculations with experiments[J]. Computational Materials Science, 2019, 165:51-58. [30] Li T, Wu L, Wang Y, et al. Yttrium-doped Sb2Te as high speed phase-change materials with good thermal stability[J]. Materials Letters, 2019, 247(JUL.15): 60-62. [31] Zewdie G M, Zhou Y, Sun L, et al. Chemical design principles for cache-type Sc-Sb-Te phase-change memory materials[J]. Chemistry of Materials, 2019, 31: 4008-4015. [32] Sutou Y, Kamada T, Sumiya M, et al. Crystallization process and thermal stability of Ge1Cu2Te3 amorphous thin films for use as phase change materials[J]. Acta Materialia, 2012, 60(3): 872-880. [33] Liu Y G, Chen Y F, Cai D L, et al. Fast switching and low drift of TiSbTe thin films for phase change memory applications[J]. Materials Science in Semiconductor Processing, 2019, 91: 399-403. [34] Cecchini R, Benitez J J, Sanchez-Lopez J C, et al. Nanoscale mechanically induced structural and electrical changes in Ge2Sb2Te5 films[J]. Journal of Applied Physics, 2012, 111(1): 770. [35] You H, Hu Y, Zhu X, et al. Simultaneous ultra-long data retention and low power based on Ge10Sb90/SiO2 multilayer thin films[J]. Applied Physics A, 2018, 124(2): 168. [36] Lee B S, Shelby R M, Raoux S, et al. Nanoscale nuclei in phase change materials: origin of different crystallization mechanisms of Ge2Sb2Te5 and AgInSbTe[J]. J Appl Phys, 2014, 115(6):063506. [37] Kim J H, Park J H, Ko D H. Effect of selenium doping on the crystallization behaviors of GeSb for phase-change memory applications[J]. Thin Solid Films, 2018, 653: 173-178. [38] Liu R, Hu A, Zhao Z, et al. Zn-doped Sb70Se30 thin films with multiple phase transition for high storage density and low power consumption phase change memory applications[J]. Scripta Materialia, 2020, 178: 324-328. [39] Kim J H, Byeon D S, Ko D H, et al. Physical and electrical characteristics of GexSb100-x films for use as phase-change materials[J]. Thin Solid Films, 2018: 659. [40] Liu G, Wu L, Chen X, et al. The investigations of characteristics of GeSe thin films and selector for phase change memory[J]. Journal of Alloys and Compounds, 2019: 792. [41] Sarwat, Ghazi S. Materials science and engineering of phase change random access memory[J]. Materials ence and Technology, 2017, 33(16):1890-1906. [42] Salinga M, Martin B, Kersting I, et al. Monatomic phase change memory[J]. Nature Materials, 2018, 17: 681-685. [43] Cecchini R, Selmo S, Wiemer C, et al. In-doped Sb nanowires grown by MOCVD for high speed phase change memories[J]. Micro and Nano Engineering, 2018, 2: 117-121. [44] Liu C, Yan X, Song X, et al. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications[J]. Nature Nanotechnology, 2018,13(5): 404-410. [45] Ding K, Wang J, Zhou Y, et al. Phase-change heterostructure enables ultralow noise and drift for memory operation[J]. Science, 2019, 366: 210-215. [46] 王雪鹏.面向低功耗优化的相变信息存储半导体及其相变过程的第一性原理研究[D].长春:吉林大学,2019:111-112. [47] 朱 伟,方育红,辜 艺.冯·诺依曼体系计算机的局限与非冯机发展方向研究[J].科技视界,2013(36):69-70. [48] Yu S M. Neuro-inspired computing with emerging nonvolatile memorys[J]. Proceedings of the IEEE, 2018,106(2):260-285. [49] Mead C. Neuromorphic electronic systems[J]. Proceedings of the IEEE, 1990, 78(10): 1629-1636. [50] 王宗巍,杨玉超,蔡一茂,等.面向神经形态计算的智能芯片与器件技术[J].中国科学基金,2019,33(6):656-662. [51] 王洋昊,刘 昌,黄 如,等.神经形态器件研究进展与未来趋势[J].科学通报,2020,65(10):904-915. [52] 杜宇阳,刘忠轩,宋继强.英特尔Loihi神经拟态芯片:引领智能计算新突破[J].人工智能,2018(2):60-71. [53] Wuttig M, Raoux S. The science and technology of phase change materials[J]. Inorg Gen Chem, 2012, 638: 2455-2465. [54] Suri M, Bichler O, Querlioz D, et al. Phase change memory as synapse for ultra-dense neuromorphic systems:application to complex visual pattern extraction[C]. 2011 International Electron Devices Meeting. IEEE, 2012. [55] 杭州电子科技大学.用于人工神经网络中的O-Ti-Sb-Te基突触仿生器件:中国,CN108054276A[P].2018-05-18. [56] Wang S Y, Zhang D W, Zhou P. Two-dimensional materials for synaptic electronics and neuromorphic systems[J]. Science Bulletin, 2019, 64(15): 1056-1066. [57] Pantazi A, Wo Niak S, Tuma T, et al. All-memristive neuromorphic computing with level-tuned neurons[J]. Nanotechnology, 2016, 27(35): 355205. [58] Tuma T, Pantazi A, Le Gallo M, et al. Stochastic phase-change neurons[J]. Nature Nanotechnology, 2016, 11: 693-699. [59] Ryu Hojoon, Wu H N, Rao Fubo, et al. Ferroelectric tunneling junctions based on aluminum oxide/zirconium-doped hafnium oxide for neuromorphic computing[J]. Scientific reports, 2019, 9(1): 20383. |