[1] YE X, LIU Y, HAN Q X, et al. Microspacing in-air sublimation growth of organic crystals[J]. Chemistry of Materials, 2018, 30(2): 412-420. [2] GUO Q, YE X, LIN Q L, et al. Microspacing in-air sublimation growth of ultrathin organic single crystals[J]. Chemistry of Materials, 2020, 32(18): 7618-7629. [3] ZHAO G Y, GU P C, DONG H L, et al. High-mobility N-type organic field-effect transistors of rylene compounds fabricated by a trace-spin-coating technique[J]. Advanced Electronic Materials, 2016, 2(5): 1500430. [4] WANG C L, LIU Y L, JI Z Y, et al. Cruciforms: assembling single crystal micro- and nanostructures from one to three dimensions and their applications in organic field-effect transistors[J]. Chemistry of Materials, 2009, 21(13): 2840-2845. [5] JANG J, NAM S, IM K, et al. Highly crystalline soluble acene crystal arrays for organic transistors: mechanism of crystal growth during dip-coating[J]. Advanced Functional Materials, 2012, 22(5): 1005-1014. [6] PARK K S, CHO B, BAEK J, et al. Single-crystal organic nanowire electronics by direct printing from molecular solutions[J]. Advanced Functional Materials, 2013, 23(38): 4776-4784. [7] XU C H, HE P, LIU J, et al. A general method for growing two-dimensional crystals of organic semiconductors by “solution epitaxy”[J]. Angewandte Chemie International Edition, 2016, 55(33): 9519-9523. [8] LI L Q, GAO P, SCHUERMANN K C, et al. Controllable growth and field-effect property of monolayer to multilayer microstripes of an organic semiconductor[J]. Journal of the American Chemical Society, 2010, 132(26): 8807-8809. [9] LI L Q, GAO P, BAUMGARTEN M, et al. High performance field-effect ammonia sensors based on a structured ultrathin organic semiconductor film[J]. Advanced Materials, 2013, 25(25): 3419-3425. [10] YE X, LIU Y, GUO Q, et al. 1D versus 2D cocrystals growth via microspacing in-air sublimation[J]. Nature Communications, 2019, 10(1): 761. [11] TAKENAKA H, OGAKI T, WANG C Y, et al. Selenium-substituted β-methylthiobenzo[1, 2-b: 4, 5-b']dithiophenes: synthesis, packing structure, and transport properties[J]. Chemistry of Materials, 2019, 31(17): 6696-6705. [12] PRADEEP V V, MITETELO N, ANNADHASAN M, et al. Ambient pressure sublimation technique provides polymorph-selective perylene nonlinear optical microcavities[J]. Advanced Optical Materials, 2020, 8(1): 1901317. [13] FENG X, SUN Z D, PEI K, et al. 2D inorganic bimolecular crystals with strong in-plane anisotropy for second-order nonlinear optics[J]. Advanced Materials, 2020, 32(32): 2003146. [14] YIN F, WANG L, YANG X K, et al. High performance single-crystalline organic field-effect transistors based on molecular-modified dibenzo[a, e]pentalenes derivatives[J]. New Journal of Chemistry, 2020, 44(40): 17552-17557. [15] CAO Q J, LU C R, WANG Q, et al. Micro-spacing in-air sublimation of submillimeter-scaled rubrene nanoribbons and nanosheets for efficient optical waveguides[J]. Organic Electronics, 2020, 87: 105983. [16] ZHOU S M, LU Q, SUN Y N, et al. Synthesis, structure, and aggregated state emission of regio-isomeric 3-Pyrenyl-2-(4'-Pyridinyl)-Acrylonitrile[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389: 112212. |