[1] GAO N, WEI Z, HOU H, et al. Design and experimental investigation of V-folded beams with acoustic black hole indentations[J]. The Journal of the Acoustical Society of America, 2019, 145(1):EL79-83. [2] 梁孝东,缪林昌,尤 佺,等.局域共振二维声子晶体的低频带隙特性研究[J].人工晶体学报,2019,48(7):1225-1232. LIANG X D, MIAO L C, YOU Q, et al. Low-frequency band gap characteristics of locally resonant two-dimensional phononic crystal[J]. Journal of Synthetic Crystals, 2019, 48(7): 1225-1232(in Chinese). [3] MA F, CHEN J, WU J H. Three-dimensional acoustic sub-diffraction focusing by coiled metamaterials with strong absorption[J]. Journal of Materials Chemistry C, 2019, 17(7): 5131-5138. [4] LIU C, WU J H, CHEN X, et al. A thin low-frequency broadband metasurface with multi-order sound absorption[J]. Journal of Physics D, 2019, 52(10): 105302. [5] KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993, 71(13): 2022-2025. [6] LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736. [7] 温激鸿,刘耀宗,郁殿龙,等.基于散射单元的声子晶体振动带隙研究[J].人工晶体学报,2004,33(3):358-362. WEN J H, LIU Y Z, YU D L, et al. Research on vibration band gaps of phononic crystals consisting of scattering cells[J]. Journal of Synthetic Crystals, 2004, 33(3): 358-362(in Chinese). [8] 许振龙,吴福根,郭钟宁.基于声子晶体环形腔的可调声波分插滤波器[J].人工晶体学报,2016,45(9):2246-2250. XU Z L, WU F G, GUO Z N. Tunable acoustic add-drop filter based on ring resonator of phononic crystals[J]. Journal of Synthetic Crystals, 2016, 45(9): 2246-2250(in Chinese). [9] 郑忱煜,徐德辉,熊 斌.基于微机械加工工艺的声子晶体器件[J].人工晶体学报,2019,48(8):1418-1423. ZHENG C Y, XU D H, XIONG B. Phononic crystal devices based on micromachining technology[J]. Journal of Synthetic Crystals, 2019, 48(8): 1418-1423(in Chinese). [10] JENSEN J S. Phononic band gaps and vibrations in one-and two-dimensional mass-spring structures[J]. Journal of Sound and Vibration, 2003, 266(5): 1053-1078. [11] JING L, WU J H, GUAN D, et al. Multilayer-split-tube resonators with low-frequency band gaps in phononic crystals[J]. Journal of Applied Physics, 2014, 116(10): 103514. [12] YAO S, ZHOU X, HU G. Experimental study on negative effective mass in a 1D mass-spring system[J]. New Journal of Physics, 2008, 10(4): 043020. [13] HUANG H H, SUN C T, HUANG G L. On the negative effective mass density in acoustic metamaterials[J]. International Journal of Engineering Science, 2009, 47(4): 610-617. [14] HUANG G L, SUN C T. Band gaps in a multiresonator acoustic metamaterial[J]. Journal of Vibration and Acoustics, 2010, 132(3): 031003. [15] LI Q Q, HE Z C, LI E. Dissipative multi-resonator acoustic metamaterials for impact force mitigation and collision energy absorption[J]. Acta Mechanica, 2019, 230: 2905-2935. [16] ALAMRI S, LI B, TAN K T. Dynamic load mitigation using dissipative elastic metamaterials with multiple Maxwell-type oscillators[J]. Journal of Applied Physics, 2018, 123(9): 095111. [17] BARNHART M V, XU X, CHEN Y, et al. Experimental demonstration of a dissipative multi-resonator metamaterial for broadband elastic wave attenuation[J]. Journal of Sound and Vibration, 2019, 438: 1-12. [18] NARISETTI R K, LEAMY M J, RUZZENE M. A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures[J]. Journal of Vibration and Acoustics, 2010, 132(3): 031001. [19] YAO S, ZHOU X, HU G. Investigation of the negative-mass behaviors occurring below a cut-off frequency[J]. New Journal of Physics, 2010, 12(10): 103025. [20] LIU Y, SU X, SUN C T. Broadband elastic metamaterial with single negativity by mimicking lattice systems[J]. Journal of the Mechanics and Physics of Solids, 2015, 74: 158-174. [21] LEE S H, PARK C M, SEO Y M, et al. Acoustic metamaterial with negative density[J]. Physics letters A, 2009, 373(48): 4464-4469. [22] LU K, WU J H, GUAN D, et al. A lightweight low-frequency sound insulation membrane-type acoustic metamaterial[J]. Aip Advances, 2016, 6(2): 025116. [23] LI B, TAN K T. Asymmetric wave transmission in a diatomic acoustic/elastic metamaterial[J]. Journal of Applied Physics, 2016, 120(7): 075103. [24] LIU Y, SHEN X, SU X, et al. Elastic metamaterials with low-frequency passbands based on lattice system with on-site potential[J]. Journal of Vibration and Acoustics, 2016, 138(2): 021011. [25] LIU Y, YI J, LI Z, et al. Dissipative elastic metamaterial with a low-frequency passband[J]. AIP Advances, 2017, 7(6): 065215. |