[1] SUN S D, ZHANG X J, YANG Q, et al. Cuprous oxide (Cu2O) crystals with tailored architectures: a comprehensive review on synthesis, fundamental properties, functional modifications and applications[J]. Progress in Materials Science, 2018, 96: 111-173. [2] BRYAN A M, SANTINO L M, LU Y, et al. Conducting polymers for pseudocapacitive energy storage[J]. Chemistry of Materials, 2016, 28(17): 5989-5998. [3] WANG W, FENG H M, LIU J G, et al. A photo catalyst of cuprous oxide anchored MXene nanosheet for dramatic enhancement of synergistic antibacterial ability[J]. Chemical Engineering Journal, 2020, 386: 124116. [4] BRANDT I S, TUMELERO M A, PELEGRINI S, et al. Electrodeposition of Cu2O: growth, properties, and applications[J]. Journal of Solid State Electrochemistry, 2017, 21(7): 1999-2020. [5] SULLIVAN I, ZOELLNER B, MAGGARD P A. Copper(I)-based p-type oxides for photoelectrochemical and photovoltaic solar energy conversion[J]. Chemistry of Materials, 2016, 28(17): 5999-6016. [6] LUO J S, STEIER L, SON M K, et al. Cu2O nanowire photocathodes for efficient and durable solar water splitting[J]. Nano Letters, 2016, 16(3): 1848-1857. [7] YAN Q H, ZHI N, YANG L, et al. A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode[J]. Scientific Reports, 2020, 10: 10607. [8] KUMAR R, RAI P, SHARMA A. Facile synthesis of Cu2O microstructures and their morphology dependent electrochemical supercapacitor properties[J]. RSC Advances, 2016, 6(5): 3815-3822. [9] ZHOU Y, LIU G Q, ZHU X Y, et al. Cu2O quantum dots modified by RGO nanosheets for ultrasensitive and selective NO2 gas detection[J]. Ceramics International, 2017, 43(11): 8372-8377. [10] TANG L, DU Y, KONG C, et al. One-pot synthesis of etched Cu2O cubes with exposed {110} facets with enhanced visible-light-driven photocatalytic activity[J]. Physical Chemistry Chemical Physics, 2015, 17(44): 29479-29482. [11] TOE C Y, ZHENG Z K, WU H, et al. Photocorrosion of cuprous oxide in hydrogen production: rationalising self-oxidation or self-reduction[J]. Angewandte Chemie International Edition, 2018, 57(41): 13613-13617. [12] 万文亮,郎五可,郭晓伟.葡萄糖还原法制备不同形貌氧化亚铜的研究[J].化学研究与应用,2020,32(7):1141-1146. WAN W L, LANG W K, GUO X W. Study of diverse morphology of Cu2O synthesized through glucose reduction[J]. Chemical Research and Application, 2020, 32(7): 1141-1146(in Chinese). [13] WANG G, SUN H, DING L, et al. Growth of Cu particles on a Cu2O truncated octahedron: tuning of the Cu content for efficient glucose sensing[J]. Physical Chemistry Chemical Physics, 2015, 17(37): 24361-24369. [14] JIANG D L, XING C S, LIANG X M, et al. Synthesis of cuprous oxide with morphological evolution from truncated octahedral to spherical structures and their size and shape-dependent photocatalytic activities[J]. Journal of Colloid and Interface Science, 2016, 461: 25-31. [15] 王岳俊,周康根,蒋志刚.葡萄糖还原氢氧化铜制备球形氧化亚铜及其粒度控制研究[J].无机化学学报,2011,27(12):2405-2412. WANG Y J, ZHOU K G, JIANG Z G. Preparation and size control of spherical cuprous oxide particles by reducing cupric dioxide with glucose[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(12): 2405-2412(in Chinese). [16] POLAT K. Cuprous oxide film sputtered on monolayer graphene for visible light sensitive heterogeneous photocatalysis[J]. Thin Solid Films, 2020, 709: 138254. [17] ZHAO Y J, LI Y, WU Y B, et al. Preparation and photoelectric properties of praseodymium-doped cuprous oxide thin films[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(4): 3092-3100. [18] VEIGA L S, GARATE O, TANCREDI P, et al. Performance of cuprous oxide mesoparticles with different morphologies as catalysts in a carbon nanotube ink for printing electrochemical sensors[J]. Journal of Alloys and Compounds, 2020, 847: 156449. [19] CHANG Y, TEO J J, ZENG H C. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres[J]. Langmuir, 2005, 21(3): 1074-1079. [20] SHANG Y, GUO L. Facet-controlled synthetic strategy of Cu2O-based crystals for catalysis and sensing[J]. Advanced Science, 2015, 2(10): 1500140. [21] LIU H R, MIAO W F, YANG S, et al. Controlled synthesis of different shapes of Cu2O via γ-irradiation[J]. Crystal Growth & Design, 2009, 9(4): 1733-1740. [22] 陈之战,施尔畏,李汶军,等.水热条件下Cu2O的连生习性[J].人工晶体学报,2001,30(4):369-374. CHEN Z Z, SHI E W, LI W J, et al. Epitaxial growth habit of Cu2O under hydrothermal condition[J]. Journal of Synthetic Crystals, 2001, 30(4): 369-374(in Chinese). [23] SUN S D, YANG Z M. Recent advances in tuning crystal facets of polyhedral cuprous oxide architectures[J]. RSC Adv, 2014, 4(8): 3804-3822. [24] SIEGFRIED M, CHOI K S. Electrochemical crystallization of cuprous oxide with systematic shape evolution[J]. Advanced Materials, 2004, 16(19): 1743-1746. [25] SUN S D, KONG C C, YANG S C, et al. Highly symmetric polyhedral Cu2O crystals with controllable-index planes[J]. CrystEngComm, 2011, 13(7): 2217. [26] HUO W L, QI F, ZHANG X Y, et al. Ultralight alumina ceramic foams with single-grain wall using sodium dodecyl sulfate as long-chain surfactant[J]. Journal of the European Ceramic Society, 2016, 36(16): 4163-4170. [27] SUI Y M, FU W Y, YANG H B, et al. Low temperature synthesis of Cu2O crystals: shape evolution and growth mechanism[J]. Crystal Growth & Design, 2010, 10(1): 99-108. [28] GONG S Y, LI W H, XIE Z, et al. Low temperature decomposition of ozone by facilely synthesized cuprous oxide catalyst[J]. New Journal of Chemistry, 2017, 41(12): 4828-4834. |