[1] SNETKOV I L, VOITOVICH A V, PALASHOV O V, et al. Review of Faraday isolators for kilowatt average power lasers[J]. IEEE J Quantum Electron, 2014, 50(6): 434-443. [2] YASUHAR R, SNETKOV I, STAROBOR A, et al. Terbium gallium garnet ceramic Faraday rotator for high-power laser application[J]. Opt Lett, 2014, 39(6): 1145-1148. [3] CHEN Z, YANG L, WANG X Y, et al. Highly transparent terbium gallium garnet crystal fabricated by the floating zone method for visibleeinfrared optical isolators[J]. Opt Mater, 2015, 46: 12-15. [4] YASUHAR R, FURUSE H. Thermally induced depolarization in TGG ceramics[J]. Opt Lett, 2013, 38(10): 1751-1753. [5] ZHELEZNOV D, STAROBOR A, PALASHOV O, et al. High-power Faraday isolators based on TAG ceramics[J]. Opt Express, 2014, 2(3)2: 2578-2583. [6] CHEN C, YI X Z, ZHANG S, et al. Vacuum sintering of Tb3Al5O12transparent ceramics with combined TEOS+MgO sintering aids[J]. Ceram Int, 2015, 41(10): 12823-12827. [7] YOSHIDA H, TSUBAKIMOTO K, FUJIMOTO Y, et al. Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator[J]. Opt Express, 2011, 19(16): 15181-15197. [8] ZHELEZNOV D, STAROBOR A, PALASHOV O, et al. Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping[J]. Opt Lett, 2014, 39(7): 2183-2186. [9] STAROBOR A, PALASHOV O, ZHOU S M. Thermo-optical properties of terbium aluminum garnet ceramics doped with silicon and titanium[J]. Opt Lett, 2016, 41(7): 1510-1513. [10] SNETKOV I L, YASUHARA R, STAROBOR A V, et al. Thermooptical and magneto-optical characteristics of terbium scandium aluminum garnet crystals[J]. IEEE Quantum Electron, 2015, 51: 7000307. [11] SNETKOV I L, PERMIN D A, BALABANOV S S, et al. Wavelength dependence of verdet constant of Tb3+∶Y2O3 ceramics[J]. Appl. Phys. Lett., 2016, 108(16): 161905. [12] IKESUE A, AUNG Y L, MAKIKAWA S, et al. Polycrystalline (TbxY1-x)2O3 Faraday rotator[J]. Opt Lett, 2017, 42(21): 4399-4401. [13] IKESUE A, AUNG Y L, MAKIKAWA S, et al. Total performance of magneto-optical ceramics with a bixbyite structure[J]. Materials, 2019, 12(3): 421. [14] LU B, CHENG H M, XU X X, et al. Preparation and characterization of transparent magneto-optical Ho2O3 ceramics[J]. J Am Ceram Soc, 2019, 102(1): 118-122. [15] CHENG H M, LU B, LIU Y X, et al. Transparent magneto-optical Ho2O3 ceramics: role of self-reactive resultant oxyfluoride additive and investigation of vacuum sintering kinetics[J]. Ceram Int, 2019, 45(12): 14761-14767. [16] SNETKOV I L, YAKOVLEV A I, PERMIN D A, et al. Magneto-optical Faraday effect in dysprosium oxide (Dy2O3) based ceramics obtained by vacuum sintering[J]. Opt Lett, 2018, 43(16): 4041-4044. [17] SLEZAKl O, YASUHARA R, VOJNA D, et al. Temperature-wavelength dependence of verdet constant of Dy2O3 ceramics[J]. Opt Mater Express, 2019, 9(7): 2971-2981. [18] WAKEFIELD G, KERON H A, DOBSON P J, et al. Structural and optical properties of terbium oxide nanoparticles[J]. J Phys Chem Solids, 1999, 60: 503-508. [19] YANG M Q, ZHOU D, XU J Y, et al. Fabrication and magneto-optical property of yttria stabilized Tb2O3 transparent ceramics[J]. J Eur Ceram Soc,2019, 39: 5005-5009. [20] STANISLAV S, BALABANOV D A, PERMIN E Y, et al. Synthesis and structural characterization of ultrafine terbium oxide powders[J]. Ceram Int, 2017, 43(18): 16569-16574. [21] LU B, SUN Z G, WANG X Y, et al. Photoluminescent and scintillant properties of highly transparent [(Y1-xGdx)0.99Dy0.01]2O3 (x = 0 and 0.4) ceramics[J]. J Am Ceram Soc, 2019, 102(8): 4773-4780. [22] 王晴晴,石 云,冯亚刚,等.太阳光泵浦Cr,Nd∶YAG透明陶瓷的光谱特性和激光参数[J].发光学报, 2019, 40(11): 1365-1372. WANG Q Q, SHI Y, FENG Y G, et al. Spectral characteristics and laser parameters of solar pumped Cr, Nd∶YAG transparent ceramics[J]. Chinese Journal of Luminescence, 2019, 40(11): 1365-1372(in Chinese). [23] 代雨航,李 剑,张 莹,等.Er,Yb∶(LaLu)2O3透明陶瓷制备及上转换发光性能[J].发光学报, 2018, 39(4): 488-493. DAI Y H, LI J, ZHANG Y, et al. Preparation of Er, Yb∶(LaLu)2O3 ceramic and its upconversion luminescent properties[J]. Chinese Journal of Luminescence, 2018, 39(4): 488-493(in Chinese). [24] SAITO N, MATSUDA S, IKEGAMI T. Fabrication of transparent yttria ceramics at low temperature using carbonate-derived powder[J]. J Am Ceram Soc, 1998, 81(8): 2023-2028. [25] LU B, LI J G, SAKKA Y. Controlled Processing of (Gd,Ln)2O3∶Eu (Ln=Y, Lu) red phosphor particles and compositional effects on photoluminescence[J]. Sci Technol Adv Mater, 2013, 14(6):064202. [26] LU B, CHENG H M, SUN Z G, et al. Controlled preparation of red-light-emitting (Y0.95Eu0.05)2O3 phosphors and vacuum sintering of transparent (Y0.95Eu0.05)2O3 ceramics[J]. J Ceram Sci Technol, 2018, 9(1): 53-60. [27] SUN Z G, CHEN Z Y, WANG M Y, et al. Production and optical properties of Ce3+-activated and Lu3+-stabilized transparent gadolinium aluminate garnet ceramics[J]. J Am Ceram Soc, 2020, 103(2): 809-818. [28] ZHANG J Y, CHEN H T, WANG J P, et al. Phase transformation process of Tb2O3 at elevated temperature[J]. Scripta Mater, 2019, 171: 108-111. [29] XU X X, LU B, HU J X, et al. Controlled synthesis and photoluminescence behaviors of Lu2O3∶Eu and Lu2O2S∶Eu phosphor particles[J]. J Lumin, 2019, 215: 116702. [30] LU B, LI J G, SUZUKI T S, et al. Controlled synthesis of layered rare-earth hydroxide nanosheets leading to highly transparent (Y0.95Eu0.05)2O3 ceramics[J]. J Am Ceram Soc, 2015, 98(5): 1413-1422. [31] WANG L R, LU B, LIU X, et al. Fabrication and upconversion luminescence of novel transparent Er2O3 ceramics[J]. J Eur Ceram Soc, 2020, 40(4): 1767-1772. [32] HOROZ S, SIMSEK S, PALAZ S, et al. Electronic and optical properties of rare earth oxides:Ab initio calculation[J]. World J Condens Matter Phys, 2015, 5: 78-85. |