人工晶体学报 ›› 2021, Vol. 50 ›› Issue (11): 1995-2012.
• 特邀综述 • 下一篇
王新月1,2, 张胜男1,2, 霍晓青1,2, 周金杰1,2, 王健1,2, 程红娟1,2
出版日期:
2021-11-15
发布日期:
2021-12-13
通讯作者:
程红娟,高级工程师。E-mail:xiemn08@126.com
作者简介:
王新月(1996—),男,山西省人,助理工程师。E-mail:wangxinyue@tju.edu.cn; 程红娟(1978—),女,河北省人,中国电科46所研发部,副主任/高工,《人工晶体学报》青年编委,毕业于南开大学,主要研究方向为宽禁带半导体单晶材料生长及模拟仿真,曾获多项国防科技进步奖。
WANG Xinyue1,2, ZHANG Shengnan1,2, HUO Xiaoqing1,2, ZHOU Jinjie1,2, WANG Jian1,2, CHENG Hongjuan1,2
Online:
2021-11-15
Published:
2021-12-13
摘要: 氧化镓(β-Ga2O3)是一种超宽禁带氧化物半导体材料,其相关研究起源于日本。21世纪初,日本东北大学利用浮区法获得了多晶向的高质量β-Ga2O3单晶晶圆,京都大学开展了β-Ga2O3薄膜外延研究并获得了高质量的同质外延片。在此基础上,日本信息通信研究机构于2012年构建了第一个β-Ga2O3金属半导体场效应晶体管(MESFET),证明了β-Ga2O3在功率器件领域拥有巨大潜能,开启了β-Ga2O3研发的新纪元。此后,国际上众多机构加入了β-Ga2O3单晶、外延、器件的研发潮流。随着研发工艺的进步,β-Ga2O3基功率器件的耐压上限一次次被刷新。本文梳理了β-Ga2O3单晶、外延、器件发展的时间线,汇总分析了β-Ga2O3功率器件的研究现状,指出存在的问题和可能的解决方案,并对其未来进行了展望,期望为以后的技术发展提供参考。
中图分类号:
王新月, 张胜男, 霍晓青, 周金杰, 王健, 程红娟. 超宽禁带半导体β-Ga2O3相关研究进展[J]. 人工晶体学报, 2021, 50(11): 1995-2012.
WANG Xinyue, ZHANG Shengnan, HUO Xiaoqing, ZHOU Jinjie, WANG Jian, CHENG Hongjuan. Research Progress of Ultra-Wide Bandgap Semiconductor β-Ga2O3[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(11): 1995-2012.
[1] DE BOISBAUDRAN L. On the chemical and spectroscopic characters of a new metal (gallium)[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1875, 50(332): 414-416. [2] ROY R, HILL V G, OSBORN E F. Polymorphism of Ga2O3 and the system Ga2O3—H2O[J]. Journal of the American Chemical Society, 1952, 74(3): 719-722. [3] PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. [4] STEPANOV S, NIKOLAEV V, BOUGROV V, et al. Gallium oxide: properties and apply: a review[J]. Rev Adv Mater Sci, 2016, 44: 63-86. [5] 贾志泰,穆文祥,尹延如,等.导模法生长高质量氧化镓单晶的研究[J].人工晶体学报,2017,46(2):193-196. JIA Z T, MU W X, YIN Y R, et al. Growth of high quality β-Ga2O3 single crystal by EFG method[J]. Journal of Synthetic Crystals, 2017, 46(2): 193-196(in Chinese). [6] 马海鑫,丁广玉,邢艳辉,等.不同退火条件对PEALD制备的Ga2O3薄膜特性的影响[J].人工晶体学报,2021,50(5):838-844. MA H X, DING G Y, XING Y H, et al. Effects of different annealing conditions on the characteristics of Ga2O3 thin films prepared by PEALD[J]. Journal of Synthetic Crystals, 2021, 50(5): 838-844(in Chinese). [7] 张 晋,胡壮壮,穆文祥,等.高质量氧化镓单晶及肖特基二极管的制备[J].人工晶体学报,2020,49(11):2194-2199. ZHANG J, HU Z Z, MU W X, et al. High quality β-Ga2O3 single crystal and fabrication of Schottky diode[J]. Journal of Synthetic Crystals, 2020, 49(11): 2194-2199(in Chinese). [8] TOMM Y, REICHE P, KLIMM D, et al. Czochralski grown Ga2O3 crystals[J]. Journal of Crystal Growth, 2000, 220(4): 510-514. [9] TOMM Y, KO J M, YOSHIKAWA A, et al. Floating zone growth of β-Ga2O3: a new window material for optoelectronic device applications[J]. Solar Energy Materials and Solar Cells, 2001, 66(1/2/3/4): 369-374. [10] FUKUDA T, SHIMAMURA K, YOSHIKAWA A, et al. Crystal growth of new functional materials for electro-optical applications[C]//Proc SPIE 4412, International Conference on Solid State Crystals 2000: Growth, Characterization, and Applications of Single Crystals, 2001, 4412: 18-25. [11] VIÍLLORA E G, ATOU T, SEKIGUCHI T, et al. Cathodoluminescence of undoped β-Ga2O3 single crystals[J]. Solid State Communications, 2001, 120(11): 455-458. [12] VIÍLLORA E G, MORIOKA Y, ATOU T, et al. Infrared reflectance and electrical conductivity of β-Ga2O3[J]. Physica Status Solidi (a), 2002, 193(1): 187-195. [13] VIÍLLORA E G, MURAKAMI Y, SUGAWARA T, et al. Electron microscopy studies of microstructures in β-Ga2O3 single crystals[J]. Materials Research Bulletin, 2002, 37(4): 769-774. [14] GARCÍA VÍLLORA E, HATANAKA K, ODAKA H, et al. Luminescence of undoped β-Ga2O3 single crystals excited by picosecond X-ray and sub-picosecond UV pulses[J]. Solid State Communications, 2003, 127(5): 385-388. [15] YAMAGA M, VÍLLORA E G, SHIMAMURA K, et al. Donor structure and electric transport mechanism in β-Ga2O3[J]. Physical Review B, 2003, 68(15): 155207. [16] VÍLLORA E G, SHIMAMURA K, YOSHIKAWA Y, et al. Large-size β-Ga2O3 single crystals and wafers[J]. Journal of Crystal Growth, 2004, 270(3/4): 420-426. [17] SHIMAMURA K, VILLORA E G, MURAMATU K, et al. Optoelectronic single-crystal candidates for UV/VUV light sources (<Special Issue> Crystal Growth Technology of Fluoride and Oxide Developed from the Viewpoint of Their Material and Functional Properties)[J]. J Jpn Assoc Cryst Growth, 2006, 33: 147-154. [18] AIDA H, NISHIGUCHI K, TAKEDA H, et al. Growth of β-Ga2O3Single crystals by the edge-defined, film fed growth method[J]. Japanese Journal of Applied Physics, 2008, 47(11): 8506-8509. [19] VÍLLORA E G, SHIMAMURA K, KITAMURA K, et al. Rf-plasma-assisted molecular-beam epitaxy of β-Ga2O3[J]. Applied Physics Letters, 2006, 88(3): 031105. [20] OSHIMA T, OKUNO T, FUJITA S. Ga2O3Thin film growth onc-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors[J]. Japanese Journal of Applied Physics, 2007, 46(11): 7217-7220. [21] OHIRA S, YOSHIOKA M, SUGAWARA T, et al. Fabrication of hexagonal GaN on the surface of β-Ga2O3 single crystal by nitridation with NH3[J]. Thin Solid Films, 2006, 496(1): 53-57. [22] OHIRA S, SUZUKI N, ARAI N, et al. Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing[J]. Thin Solid Films, 2008, 516(17): 5763-5767. [23] OHIRA S, ARAI N, OSHIMA T, et al. Atomically controlled surfaces with step and terrace of β-Ga2O3 single crystal substrates for thin film growth[J]. Applied Surface Science, 2008, 254(23): 7838-7842. [24] OSHIMA T, ARAI N, SUZUKI N, et al. Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy[J]. Thin Solid Films, 2008, 516(17): 5768-5771. [25] OSHIMA T, FUJITA S. Properties of Ga2O3-based (InxGa1-x)2O3 alloy thin films grown by molecular beam epitaxy[J]. Physica Status Solidi C, 2008, 5(9): 3113-3115. [26] OSHIMA T, OKUNO T, ARAI N, et al. β-Al2xGa2-2xO3Thin film growth by molecular beam epitaxy[J]. Japanese Journal of Applied Physics, 2009, 48(7): 070202. [27] SHIMAMURA K, VÍLLORA E G, DOMEN K, et al. Epitaxial growth of GaN on (100) β-Ga2O3Substrates by metalorganic vapor phase epitaxy[J]. Japanese Journal of Applied Physics, 2005, 44(1): L7-L8. [28] VÍLLORA E G, SHIMAMURA K, KITAMURA K, et al. Epitaxial relationship between wurtzite GaN and β-Ga2O3[J]. Applied Physics Letters, 2007, 90(23): 234102. [29] OSHIMA T, OKUNO T, ARAI N, et al. Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3Substrates[J]. Applied Physics Express, 2008, 1(1): 011202. [30] OSHIMA T, OKUNO T, ARAI N, et al. Flame detection by a β-Ga2O3-based sensor[J]. Japanese Journal of Applied Physics, 2009, 48(1): 011605. [31] HIGASHIWAKI M, SASAKI K, KURAMATA A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates[J]. Applied Physics Letters, 2012, 100(1): 013504. [32] SASAKI K, KURAMATA A, MASUI T, et al. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy[J]. Applied Physics Express, 2012, 5(3): 035502. [33] HIGASHIWAKI M, SASAKI K, WONG M H, et al. Research and development on Ga2O3 transistors and diodes[C]//The 1 st IEEE Workshop on Wide Bandgap Power Devices and Applications. October 27-29, 2013, Columbus, OH, USA. IEEE, 2013: 100-103. [34] HIGASHIWAKI M, SASAKI K, KURAMATA A, et al. Development of gallium oxide power devices[J]. Physica Status Solidi (a), 2014, 211(1): 21-26. [35] HIGASHIWAKI M, SASAKI K, WONG M H, et al. Current status of gallium oxide-based power device technology[C]//2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). October 11-14, 2015, New Orleans, LA, USA. IEEE, 2015: 1-4. [36] HIGASHIWAKI M, SASAKI K, MURAKAMI H, et al. Recent progress in Ga2O3power devices[J]. Semiconductor Science and Technology, 2016, 31(3): 034001. [37] KURAMATA A, KOSHI K, WATANABE S, et al. Bulk crystal growth of Ga2O3[C]//SPIE OPTO. Proc SPIE 10533, Oxide-Based Materials and Devices Ⅸ, San Francisco, California, USA. 2018, 1053: 9-14. [38] NOMURA K, GOTO K, TOGASHI R, et al. Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy[J]. Journal of Crystal Growth, 2014, 405: 19-22. [39] MURAKAMI H, NOMURA K, GOTO K, et al. Homoepitaxial growth of β-Ga2O3layers by halide vapor phase epitaxy[J]. Applied Physics Express, 2015, 8(1): 015503. [40] GALAZKA Z, UECKER R, IRMSCHER K, et al. Czochralski growth and characterization of β-Ga2O3 single crystals[J]. Crystal Research and Technology, 2010, 45(12): 1229-1236. [41] GALAZKA Z, IRMSCHER K, UECKER R, et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method[J]. Journal of Crystal Growth, 2014, 404: 184-191. [42] SCHEWSKI R, BALDINI M, IRMSCHER K, et al. Evolution of planar defects during homoepitaxial growth of β-Ga2O3 layers on (100) substrates—a quantitative model[J]. Journal of Applied Physics, 2016, 120(22): 225308. [43] WONG M H, SASAKI K, KURAMATA A, et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V[J]. IEEE Electron Device Letters, 2016, 37(2): 212-215. [44] GREEN A J, CHABAK K D, HELLER E R, et al. 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2016, 37(7): 902-905. [45] CHABAK K D, MOSER N, GREEN A J, et al. Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage[J]. Applied Physics Letters, 2016, 109(21): 213501. [46] CHABAK K, GREEN A, MOSER N, et al. Gate-recessed, laterally-scaled β-Ga2O3 MOSFETs with high-voltage enhancement-mode operation[C]//2017 75th Annual Device Research Conference (DRC). June 25-28, 2017, South Bend, IN, USA. IEEE, 2017: 1-2. [47] MOSER N, MCCANDLESS J, CRESPO A, et al. Ge-doped β-Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2017, 38(6): 775-778. [48] CHABAK K D, MCCANDLESS J P, MOSER N A, et al. Recessed-gate enhancement-mode β-Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2018, 39(1): 67-70. [49] LIDDY K J, GREEN A J, HENDRICKS N S, et al. Thin channel β-Ga2O3 MOSFETs with self-aligned refractory metal gates[J]. Applied Physics Express, 2019, 12(12): 126501. [50] LI W S, HU Z Y, NOMOTO K, et al. 1230 V β-Ga2O3 trench Schottky barrier diodes with an ultra-low leakage current of 1 μA/cm2[J]. Applied Physics Letters, 2018, 113(20): 202101. [51] LI W S, NOMOTO K, HU Z Y, et al. 1.5 kV vertical Ga2O3 trench-MIS Schottky barrier diodes[C]//2018 76th Device Research Conference (DRC). June 24-27, 2018, Santa Barbara, CA, USA. IEEE, 2018: 1-2. [52] LI W S, HU Z Y, NOMOTO K, et al. 2.44 kV Ga2O3 vertical trench Schottky barrier diodes with very low reverse leakage current[J]. 2018 IEEE International Electron Devices Meeting (IEDM), 2018: 8.5.1-8.5.4. [53] ALLEN N, XIAO M, YAN X D, et al. Vertical Ga2O3 Schottky barrier diodes with small-angle beveled field plates: a baliga's figure-of-merit of 0.6 GW/cm2[J]. IEEE Electron Device Letters, 2019, 40(9): 1399-1402. [54] LI W S, NOMOTO K, HU Z Y, et al. Field-plated Ga2O3 trench Schottky barrier diodes with a BV2/Ron,sp of up to 0.95 GW/cm2[J]. IEEE Electron Device Letters, 2020, 41(1): 107-110. [55] YANG J C, REN F, TADJER M, et al. 2.3 kV field-plated vertical Ga2O3 Schottky rectifiers and 1 a forward current with 650 V reverse breakdown Ga2O3 field-plated Schottky barrier diodes[C]//2018 76th Device Research Conference (DRC). June 24-27, 2018, Santa Barbara, CA, USA. IEEE, 2018: 1-2. [56] ZENG K, VAIDYA A, SINGISETTI U. 1.85 kV breakdown voltage in lateral field-plated Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2018, 39(9): 1385-1388. [57] SHARMA S, ZENG K, SAHA S, et al. Field-plated lateral Ga2O3 MOSFETs with polymer passivation and 8.03 kV breakdown voltage[J]. IEEE Electron Device Letters, 2020, 41(6): 836-839. [58] YAO Y, DAVIS R F, PORTER L M. Investigation of different metals as ohmic contacts to β-Ga2O3: comparison and analysis of electrical behavior, morphology, and other physical properties[J]. Journal of Electronic Materials, 2017, 46(4): 2053-2060. [59] BROOKS TELLEKAMP M, HEINSELMAN K N, HARVEY S, et al. Growth and characterization of homoepitaxial β-Ga2O3 layers[J]. Journal of Physics D: Applied Physics, 2020, 53(48): 484002. [60] JI M, TAYLOR N R, KRAVCHENKO I, et al. Demonstration of large-size vertical Ga2O3 Schottky barrier diodes[J]. IEEE Transactions on Power Electronics, 2020, 36(1): 41-44. [61] YANG T H, FU H Q, CHEN H, et al. Temperature-dependent electrical properties of β-Ga2O3 Schottky barrier diodes on highly doped single-crystal substrates[J]. Journal of Semiconductors, 2019, 40(1): 012801. [62] KWON Y, LEE G, OH S, et al. Tuning the thickness of exfoliated quasi-two-dimensional β-Ga2O3 flakes by plasma etching[J]. Applied Physics Letters, 2017, 110(13): 131901. [63] JANG S, JUNG S, BEERS K, et al. A comparative study of wet etching and contacts on (201) and (010) oriented β-Ga2O3[J]. Journal of Alloys and Compounds, 2018, 731: 118-125. [64] MUN J K, CHO K, CHANG W, et al. Editors’ choice—2.32 kV breakdown voltage lateral β-Ga2O3 MOSFETs with source-connected field plate[J]. ECS Journal of Solid State Science and Technology, 2019, 8(7): Q3079-Q3082. [65] ZHANG J G, XIA C T, DENG Q, et al. Growth and characterization of new transparent conductive oxides single crystals β-Ga2O3:Sn[J]. Journal of Physics and Chemistry of Solids, 2006, 67(8): 1656-1659. [66] MU W X, JIA Z T, YIN Y R, et al. High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method[J]. Journal of Alloys and Compounds, 2017, 714: 453-458. [67] MU W X, JIA Z T, YIN Y R, et al. One-step exfoliation of ultra-smooth β-Ga2O3 wafers from bulk crystal for photodetectors[J]. CrystEngComm, 2017, 19(34): 5122-5127. [68] MU W X, YIN Y R, JIA Z T, et al. An extended application of β-Ga2O3 single crystals to the laser field: Cr4+: β-Ga2O3 utilized as a new promising saturable absorber[J]. RSC Advances, 2017, 7(35): 21815-21819. [69] FU B, MU W X, ZHANG J, et al. A study on the technical improvement and the crystalline quality optimization of columnar β-Ga2O3 crystal growth by an EFG method[J]. Cryst Eng Comm, 2020, 22(30): 5060-5066. [70] 唐慧丽,何诺天,罗 平,等.超宽禁带半导体β-Ga2O3单晶生长突破2英寸[J].人工晶体学报,2017,46(12):2533-2534. TANG H L, HE N T, LUO P, et al. Ultra-wide bandgap semiconductor β-Ga2O3 single crystal growth breaks through 2 inches[J]. Journal of Synthetic Crystals, 2017, 46(12): 2533-2534(in Chinese). [71] TANG H L, HE N T, ZHANG H, et al. Inhibition of volatilization and polycrystalline cracking, and the optical properties of β-Ga2O3 grown by the EFG method[J]. CrystEngComm, 2020, 22(5): 924-931. [72] ZHANG S N, LIAN X Z, MA Y C, et al. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method[J]. Journal of Semiconductors, 2018, 39(8): 083003. [73] 练小正,张胜男,程红娟,等.导模法生长大尺寸高质量β-Ga2O3单晶[J].半导体技术,2018,43(8):622-626. LIAN X Z, ZHANG S N, CHENG H J, et al. High-quality and large-size β-Ga2O3 single crystals grown by edge-defined film-fed growth method[J]. Semiconductor Technology, 2018, 43(8): 622-626(in Chinese). [74] GUO D Y, WU Z P, AN Y H, et al. Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors[J]. Applied Physics Letters, 2014, 105(2): 023507. [75] LI Y W, XIU X Q, XU W L, et al. Microstructural analysis of heteroepitaxial β-Ga2O3 films grown on (0001) sapphire by halide vapor phase epitaxy[J]. Journal of Physics D: Applied Physics, 2021, 54(1): 014003. [76] LÜ Y, SONG X B, HE Z Z, et al. Source-field-plated Ga2O3 MOSFET with a breakdown voltage of 550 V[J]. Journal of Semiconductors, 2019, 40(1): 012803. [77] FENG Q, HUANG L, HAN G Q, et al. Comparison study of β-Ga2O3 photodetectors on bulk substrate and sapphire[J]. IEEE Transactions on Electron Devices, 2016, 63(9): 3578-3583. [78] HU Z Z, ZHOU H, DANG K, et al. Lateral β -Ga2O3 Schottky barrier diode on sapphire substrate with reverse blocking voltage of 1.7 kV[J]. IEEE Journal of the Electron Devices Society, 2018, 6: 815-820. [79] ZHANG T, HU Z G, LI Y F, et al. Comparison of Ga2O3 films grown on m- and r-plane sapphire substrates by MOCVD[J]. ECS Journal of Solid State Science and Technology, 2020, 9(12): 125008. [80] FENG Z Q, CAI Y C, YAN G S, et al. A 800 V β-Ga2O3 metal-oxide-semiconductor field-effect transistor with high-power figure of merit of over 86.3 MW·cm-2[J]. Physica Status Solidi (a), 2019, 216(20): 1900421. [81] HU Z Z, ZHOU H, FENG Q, et al. Field-plated lateral β -Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high DC power figure-of-merit of 500 MW/cm2[J]. IEEE Electron Device Letters, 2018, 39(10): 1564-1567. [82] GUO Z, VERMA A, WU X F, et al. Anisotropic thermal conductivity in single crystal β-gallium oxide[J]. Applied Physics Letters, 2015, 106(11): 111909. [83] XU W H, WANG Y B, YOU T G, et al. First demonstration of waferscale heterogeneous integration of Ga2O3 MOSFETs on SiC and Si substrates by ion-cutting process[J]. 2019 IEEE International Electron Devices Meeting (IEDM), 2019: 12.5.1-12.5.4. [84] HIGASHIWAKI M, SASAKI K, KAMIMURA T, et al. Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics[J]. Applied Physics Letters, 2013, 103(12): 123511. [85] ZHANG K H L, XI K, BLAMIRE M G, et al. P-type transparent conducting oxides[J]. Journal of Physics: Condensed Matter, 2016, 28(38): 383002. [86] WILLIAMSON B A D, BUCKERIDGE J, BROWN J, et al. Engineering valence band dispersion for high mobility p-type semiconductors[J]. Chemistry of Materials, 2017, 29(6): 2402-2413. [87] TANG C, SUN J, LIN N, et al. Electronic structure and optical property of metal-doped Ga2O3: a first principles study[J]. RSC Advances, 2016, 6(82): 78322-78334. [88] YAN C Y, SU J, WANG Y F, et al. Reducing the acceptor levels of p-type β-Ga2O3 by (metal, N) co-doping approach[J]. Journal of Alloys and Compounds, 2021, 854: 157247. [89] JIANG Z X, WU Z Y, MA C C, et al. P-type β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with extremely high responsivity and gain-bandwidth product[J]. Materials Today Physics, 2020, 14: 100226. |
[1] | 开翠红, 王蓉, 杨德仁, 皮孝东. 基于碳化硅衬底的宽禁带半导体外延[J]. 人工晶体学报, 2021, 50(9): 1780-1795. |
[2] | 康森, 鲁雅荣, 石天虎, 滕斌, 宽军, 李璐, 郝文娟, 段斌斌. 改良泡生法生长720 kg级大尺寸蓝宝石晶体[J]. 人工晶体学报, 2021, 50(8): 1397-1401. |
[3] | 黄泽琛, 蒋冲, 李耳士, 李家伟, 宋娟, 王一, 郭祥, 罗子江, 丁召. GaAs衬底温度对液滴外延法生长In液滴的影响[J]. 人工晶体学报, 2021, 50(8): 1431-1437. |
[4] | 徐杰, 宋青松, 刘坚, 丁雨憧, 李东振, 徐晓东, 徐军. Sm∶YAG/Sm∶Y3ScAl4O12单晶光纤的生长及光谱性能[J]. 人工晶体学报, 2021, 50(7): 1391-1396. |
[5] | 任玉娇, 刘宗亮, 顾泓, 董晓鸣, 高晓东, 司志伟, 徐科. LPE生长GaN的不同极性面的光学性质[J]. 人工晶体学报, 2021, 50(6): 996-1001. |
[6] | 马海鑫, 丁广玉, 邢艳辉, 韩军, 张尧, 崔博垚, 林文魁, 尹浩田, 黄兴杰. 不同退火条件对PEALD制备的Ga2O3薄膜特性的影响[J]. 人工晶体学报, 2021, 50(5): 838-844. |
[7] | 邱武, 刘向阳. 以晶体生长原理重塑蚕丝柔性材料世界的未来[J]. 人工晶体学报, 2021, 50(4): 629-647. |
[8] | 陈伟超, 罗平, 王庆国, 唐慧丽, 薛艳艳, 段金柱, 王勤峰, 雷震霖, 徐军. 多片导模法蓝宝石晶体的缺陷研究[J]. 人工晶体学报, 2021, 50(4): 741-746. |
[9] | 陈王义博, 徐俞, 曹冰, 徐科. 宽周期掩膜法HVPE侧向外延自支撑GaN的研究[J]. 人工晶体学报, 2021, 50(3): 416-420. |
[10] | 陈慧挺, 赫崇君, 朱俊, 李自强, 高慧芳, 路元刚. 铌锌酸铅-钛酸铅单晶的生长及性能[J]. 人工晶体学报, 2021, 50(3): 421-427. |
[11] | 邵凯恒, 夏嵩渊, 张育民, 王建峰, 徐科. GaN单晶衬底上同质外延界面杂质的研究[J]. 人工晶体学报, 2021, 50(3): 441-446. |
[12] | 王鑫伟, 车致远, 张兴, 李玲薇, 张伟, 苏适, 马晋文. 不同形貌TiO2薄膜的可控制备及其光电化学性能研究[J]. 人工晶体学报, 2021, 50(3): 516-522. |
[13] | 郭勇文, 黄晋强, 权纪亮. 大尺寸Nd,Ce∶YAG激光晶体的生长及缺陷研究[J]. 人工晶体学报, 2021, 50(2): 244-247. |
[14] | 蒋冲, 王一, 丁召, 黄延彬, 罗子江, 李志宏, 李耳士, 郭祥. 分子束外延生长过程中GaAs(001)表面铝液滴的扩散成核过程[J]. 人工晶体学报, 2021, 50(2): 283-289. |
[15] | 刘京明, 赵有文. BAs晶体生长研究进展[J]. 人工晶体学报, 2021, 50(2): 391-396. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||