欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2021, Vol. 50 ›› Issue (11): 1995-2012.

• 特邀综述 •    下一篇

超宽禁带半导体β-Ga2O3相关研究进展

王新月1,2, 张胜男1,2, 霍晓青1,2, 周金杰1,2, 王健1,2, 程红娟1,2   

  1. 1.中国电子科技集团公司第四十六研究所,天津 300220;
    2.中国电子科技集团公司新型半导体晶体材料技术重点实验室,天津 300220
  • 出版日期:2021-11-15 发布日期:2021-12-13
  • 通讯作者: 程红娟,高级工程师。E-mail:xiemn08@126.com
  • 作者简介:王新月(1996—),男,山西省人,助理工程师。E-mail:wangxinyue@tju.edu.cn; 程红娟(1978—),女,河北省人,中国电科46所研发部,副主任/高工,《人工晶体学报》青年编委,毕业于南开大学,主要研究方向为宽禁带半导体单晶材料生长及模拟仿真,曾获多项国防科技进步奖。

Research Progress of Ultra-Wide Bandgap Semiconductor β-Ga2O3

WANG Xinyue1,2, ZHANG Shengnan1,2, HUO Xiaoqing1,2, ZHOU Jinjie1,2, WANG Jian1,2, CHENG Hongjuan1,2   

  1. 1. The 46th Research Institute, CETC, Tianjin 300220, China;
    2. Key Laboratory of Advanced Semiconductor Materials of CETC, Tianjin 300220, China
  • Online:2021-11-15 Published:2021-12-13

摘要: 氧化镓(β-Ga2O3)是一种超宽禁带氧化物半导体材料,其相关研究起源于日本。21世纪初,日本东北大学利用浮区法获得了多晶向的高质量β-Ga2O3单晶晶圆,京都大学开展了β-Ga2O3薄膜外延研究并获得了高质量的同质外延片。在此基础上,日本信息通信研究机构于2012年构建了第一个β-Ga2O3金属半导体场效应晶体管(MESFET),证明了β-Ga2O3在功率器件领域拥有巨大潜能,开启了β-Ga2O3研发的新纪元。此后,国际上众多机构加入了β-Ga2O3单晶、外延、器件的研发潮流。随着研发工艺的进步,β-Ga2O3基功率器件的耐压上限一次次被刷新。本文梳理了β-Ga2O3单晶、外延、器件发展的时间线,汇总分析了β-Ga2O3功率器件的研究现状,指出存在的问题和可能的解决方案,并对其未来进行了展望,期望为以后的技术发展提供参考。

关键词: 氧化镓, 晶体生长, 外延, 功率器件, 浮区法, 导模法超宽禁带半导体

Abstract: At the beginning of the 21st century, β-Ga2O3, an ultra-wide bandgap semiconductor, was researched initially in Japan. β-Ga2O3 wafers with different orientations were prepared by Tohoku University using floating zone technique. High-quality homoepitaxial wafers was obtained by Kyoto University which was engaged in β-Ga2O3 epitaxy research. Based on this substrate, the first Ga2O3-based MESFET device was successfully constructed by Japan National Institute of Information and Communications Technology in 2012. This work demonstrated the great potential of β-Ga2O3 in power devices and opened a new era of β-Ga2O3 research. Since then, β-Ga2O3 single crystals, epi-wafers and devices have attracted a lot of research institutions' attention. Recent years, with the technological progress, the upper limit of breakdown voltage of β-Ga2O3 power devices was repeatedly refreshed. The time line of the development of β-Ga2O3 single crystal, epi-wafers, devices and the research status of power devices are summarized and analyzed in this article. This paper points out the existing problems and possible solutions in the application of β-Ga2O3, and looks forward to its future development, and provides a reference for the future technological development of β-Ga2O3.

Key words: gallium oxide, crystal growth, epitaxy, power device, floating zone technique, edge-defined film-fed growth, ultra-wide bandgap semiconductor

中图分类号: