[1] ZHANG Y W, YE A Y, YAO Y W, et al. A sensitive near-infrared fluorescent probe for detecting heavy metal Ag+ in water samples[J]. Sensors, 2019, 19(2): 247. [2] 周 敏,陈志风,罗晓伟,等.Mn(Ⅱ)-CdTe量子点荧光猝灭法测定Ag+含量[J].西北师范大学学报(自然科学版),2020,56(6):63-68. ZHOU M, CHEN Z F, LUO X W, et al. Fluorescence quenching of Mn(Ⅱ)-doped CdTe quantum dots for the determination of silver ions[J]. Journal of Northwest Normal University (Natural Science), 2020, 56(6): 63-68(in Chinese). [3] 苗向阳,王孝英,朱钦舒.基于金纳米颗粒聚集的高灵敏Ag+电致化学发光生物传感器[J]. 南京师大学报(自然科学版), 2020, 44(3): 63-70. MIAO X Y, WANG X Y, ZHU Q S. Highly sensitive Ag+ ECL biosensor based on gold nanoparticles aggregation[J]. Journal of Nanjing Normal University (Natural Science Edition), 2020, 43(3): 63-70(in Chinese). [4] 魏 胤,公维磊,杨金玲,等.基于酶辅助信号放大的纳米石墨传感器检测银离子的研究[J].化学研究与应用,2020,32(12):2245-2250. WEI Y, GONG W L, YANG J L, et al. Research on nano-graphite sensor for silver ion detection based on enzyme-assisted signal amplification[J]. Chemical Research and Application, 2020, 32(12): 2245-2250(in Chinese). [5] 师海雄,吴贵渊,李 乔,等.基于水溶性柱[5]芳烃主体的合成及Ag+识别性能研究[J].兰州文理学院学报(自然科学版),2020,34(6):45-50. SHI H X, WU G Y, LI Q, et al. Synthesis and ag+ recognition performance of pillar [5] arene based on water soluble column[J]. Journal of Lanzhou University of Arts and Science (Natural Science Edition), 2020, 34(6): 45-50(in Chinese). [6] MENG W X, BAI X, WANG B Y, et al. Biomass-derived carbon dots and their applications[J]. Energy & Environmental Materials, 2019, 2(3): 172-192. [7] RANI U A, NG L Y, NG C Y, et al. A review of carbon quantum dots and their applications in wastewater treatment[J]. Advances in Colloid and Interface Science, 2020, 278: 102124. [8] 张 琼,丁光月,王雅文,等.宽光谱响应CQDs/TiO2复合材料的制备及其光催化活性[J].人工晶体学报,2018,47(6):1113-1118. ZHANG Q, DING G Y, WANG Y W, et al. Preparation and photocatalytic activity of CQDs/TiO2 composites with wide spectral response[J]. Journal of Synthetic Crystals, 2018, 47(6): 1113-1118(in Chinese). [9] NAIK V M, GUNJAL D B, GORE A H, et al. Quick and low cost synthesis of sulphur doped carbon dots by simple acidic carbonization of sucrose for the detection of Fe3+ ions in highly acidic environment[J]. Diamond and Related Materials, 2018, 88: 262-268. [10] LIU G H, JIA H S, LI N, et al. High-fluorescent carbon dots (CDs) originated from China grass carp scales (CGCS) for effective detection of Hg(Ⅱ) ions[J]. Microchemical Journal, 2019, 145: 718-728. [11] SINGH H, BAMRAH A, KHATRI M, et al. One-pot hydrothermal synthesis and characterization of carbon quantum dots (CQDs)[J]. Materials Today: Proceedings, 2020, 28: 1891-1894. [12] DAS R, BANDYOPADHYAY R, PRAMANIK P. Carbon quantum dots from natural resource: a review[J]. Materials Today Chemistry, 2018, 8: 96-109. [13] ATCHUDAN R, EDISON T N J I, ASEER K R, et al. Hydrothermal conversion of Magnolia liliiflora into nitrogen-doped carbon dots as an effective turn-off fluorescence sensing, multi-colour cell imaging and fluorescent ink[J]. Colloids and Surfaces B: Biointerfaces, 2018, 169: 321-328. [14] PRANEERAD J, THONGSAI N, SUPCHOCKSOONTHORN P, et al. Multipurpose sensing applications of biocompatible radish-derived carbon dots as Cu2+ and acetic acid vapor sensors[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 211: 59-70. [15] ARUMUGAM N, KIM J. Synthesis of carbon quantum dots from Broccoli and their ability to detect silver ions[J]. Materials Letters, 2018, 219: 37-40. [16] ZHAO X Y, LIAO S, WANG L M, et al. Facile green and one-pot synthesis of purple perilla derived carbon quantum dot as a fluorescent sensor for silver ion[J]. Talanta, 2019, 201: 1-8. [17] XU J Y, ZHOU Y, LIU S X, et al. Low-cost synthesis of carbon nanodots from natural products used as a fluorescent probe for the detection of ferrum(iii) ions in lake water[J]. Analytical Methods, 2014, 6(7): 2086. [18] OMER K M, TOFIQ D I, GHAFOOR D D. Highly photoluminescent label free probe for Chromium (Ⅱ) ions using carbon quantum dots co-doped with nitrogen and phosphorous[J]. Journal of Luminescence, 2019, 206: 540-546. [19] QI H J, TENG M, LIU M, et al. Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines[J]. Journal of Colloid and Interface Science, 2019, 539: 332-341. [20] DENG X Y, FENG Y L, LI H R, et al. N-doped carbon quantum dots as fluorescent probes for highly selective and sensitive detection of Fe3+ ions[J]. Particuology, 2018, 41: 94-100. [21] WANG J J, ZHANG H, ZHAO J H, et al. Simultaneous determination of paracetamol and p-aminophenol using glassy carbon electrode modified with nitrogen- and sulfur- co-doped carbon dots[J]. Microchimica Acta, 2019, 186(11): 1-9. [22] SUN X, YANG S, GUO M, et al. Reversible fluorescence probe based on N-doped carbon dots for the determination of mercury ion and glutathione in waters and living cells[J]. Analytical Sciences, 2017, 33(7): 761-767. [23] XU Q, LIU Y, SU R G, et al. Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: an integrative experimental-theoretical consideration[J]. Nanoscale, 2016, 8(41): 17919-17927. [24] XU Q, WEI J F, WANG J L, et al. Facile synthesis of copper doped carbon dots and their application as a “turn-off” fluorescent probe in the detection of Fe3+ ions[J]. RSC Advances, 2016, 6(34): 28745-28750. [25] XU Q, SU R G, CHEN Y S, et al. Metal charge transfer doped carbon dots with reversibly switchable, ultra-high quantum yield photoluminescence[J]. ACS Applied Nano Materials, 2018, 1(4): 1886-1893. [26] 鲁诗言,于淑娟,陈国全,等.氮、磷掺杂碳点的合成及在Pd2+传感中的应用[J].发光学报,2021,42(1):53-60. LU S Y, YU S J, CHEN G Q, et al. Synthesis of nitrogen and phosphorus doped carbon dots and their application in Pd2+ sensing[J]. Chinese Journal of Luminescence, 2021, 42(1): 53-60(in Chinese). [27] LU M C, DUAN Y X, SONG Y H, et al. Green preparation of versatile nitrogen-doped carbon quantum dots from watermelon juice for cell imaging, detection of Fe3+ ions and cysteine, and optical thermometry[J]. Journal of Molecular Liquids, 2018, 269: 766-774. |