人工晶体学报 ›› 2021, Vol. 50 ›› Issue (12): 2389-2400.
• 综合评述 • 上一篇
周宇1,2, 陈晓娟1,3, 卢开红1, 陈杰明4, 李宁2, 张兴华2
收稿日期:
2021-09-08
出版日期:
2021-12-15
发布日期:
2022-01-06
通讯作者:
陈晓娟,副教授。E-mail:xjchen0218@163.com作者简介:
周 宇(1995—),男,贵州省人,硕士研究生。E-mail:331105498@qq.com
基金资助:
ZHOU Yu1,2, CHEN Xiaojuan1,3, LU Kaihong1, CHEN Jieming4, LI Ning2, ZHANG Xinghua2
Received:
2021-09-08
Online:
2021-12-15
Published:
2022-01-06
摘要: 生物质炭具有原材料来源广泛、比表面积大、孔隙结构丰富、表面官能团易调控等优势,在有机污染废水处理领域展现良好的应用前景。然而,生物质炭的不同原材料、制备方法、改性措施等在很大程度上影响着生物质炭的物化性质,从而对有机污染废水表现出不同的性能和作用机制。本文主要基于生物质炭结构特性,针对其制备方法、改性手段和措施展开叙述,并总结了生物质炭用于有机污染废水处理的现状和未来发展机遇。
中图分类号:
周宇, 陈晓娟, 卢开红, 陈杰明, 李宁, 张兴华. 生物质炭的制备、功能改性及去除废水中有机污染物研究进展[J]. 人工晶体学报, 2021, 50(12): 2389-2400.
ZHOU Yu, CHEN Xiaojuan, LU Kaihong, CHEN Jieming, LI Ning, ZHANG Xinghua. Preparation, Functional Modification of Biochar and Its Removal Performance for Organic Pollutants in Wastewater: a Brief Review[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(12): 2389-2400.
[1] 王志鹏,陈 蕾.秸秆生物炭的研究进展[J].应用化工,2019,48(2):444-447. WANG Z P, CHEN L. Research progress on straw-based biochar[J]. Applied Chemical Industry, 2019, 48(2): 444-447(in Chinese). [2] 王重庆,王 晖,江小燕,等.生物炭吸附重金属离子的研究进展[J].化工进展,2019,38(1):692-706. WANG C Q, WANG H, JIANG X Y, et al. Research advances on adsorption of heavy metals by biochar[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 692-706(in Chinese). [3] 郑凯旋,刘祎丹,王洋洋.改性生物炭修复土壤重金属污染的研究进展[J].当代化工研究,2020(17):110-111. ZHENG K X, LIU Y D, WANG Y Y. Research progress of modified biochar in remediation of heavy metal pollution in soil[J]. Modern Chemical Research, 2020(17): 110-111(in Chinese). [4] LIU Y X, LONAPPAN L, BRAR S K, et al. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: a review[J]. Science of the Total Environment, 2018, 645: 60-70. [5] 徐东昱,金 洁,颜 钰,等.X射线光电子能谱与13C核磁共振在生物质碳表征中的应用[J].光谱学与光谱分析,2014,34(12):3415-3418. XU D Y, JIN J, YAN Y, et al. Characterization of biochar by X-ray photoelectron spectroscopy and 13C nuclear magnetic resonance[J]. Spectroscopy and Spectral Analysis, 2014, 34(12): 3415-3418(in Chinese). [6] 王璐瑶,谢 潇.生物炭的制备及应用研究进展[J].农业与技术,2020,40(22):34-36. WANG L Y, XIE X. Research progress on preparation and application of biochar[J]. Agriculture and Technology, 2020, 40(22): 34-36(in Chinese). [7] LEHMANN J, ITHACA, YORK N, et al. Biochar for environmental management: science, technology and implementation[J]. Science and Technology; Earthscan, 2015, 25(1): 15801-15811. [8] YI Y Q, HUANG Z X, LU B Z, et al. Magnetic biochar for environmental remediation: a review[J]. Bioresource Technology, 2020, 298: 122468. [9] LI D C, JIANG H. The thermochemical conversion of non-lignocellulosic biomass to form biochar: a review on characterizations and mechanism elucidation[J]. Bioresource Technology, 2017, 246: 57-68. [10] 马雪琦,王仁君,陈峻峰.生物炭及其复合材料的研究进展及应用现状[J].环境保护与循环经济,2020,40(8):26-29. MA X Q, WANG R J, CHEN J F. Research progress and application status of biochar and its composites[J]. Environmental Protection and Circular Economy, 2020, 40(8): 26-29(in Chinese). [11] RODRIGUEZ CORREA C, HEHR T, VOGLHUBER-SLAVINSKY A, et al. Pyrolysis vs. hydrothermal carbonization: understanding the effect of biomass structural components and inorganic compounds on the char properties[J]. Journal of Analytical and Applied Pyrolysis, 2019, 140: 137-147. [12] 汪 萍.几种农业废弃物生物炭的制备及其超级电容器性能研究[D].武汉:华中农业大学,2020. WANG P. The preparation of biochar from several agricultural residues and its application in supercapacitors[D]. Wuhan: Huazhong Agricultural University, 2020(in Chinese). [13] DIAB M, MOKARI T. Bioinspired hierarchical porous structures for engineering advanced functional inorganic materials[J]. Advanced Materials, 2018, 30(41): 1706349. [14] XIONG G P, HE P G, LYU Z P, et al. Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors[J]. Nature Communications, 2018, 9: 790. [15] 王 鹏,唐朝生,孙凯强,等.污泥处理的固化/稳定化技术研究进展[J].工程地质学报,2016,24(4):649-660. WANG P, TANG C S, SUN K Q, et al. Advances on solidification / stabilization of sludge disposal[J]. Journal of Engineering Geology, 2016, 24(4): 649-660(in Chinese). [16] 段祥斌,曹诗扬,彭继成.污泥热解合成气冷凝洗涤废水水质特性分析[C]//《环境工程》2019年全国学术年会论文集.北京,2019:53-55+60. DUAN X B, CAO S Y, PENG J C. Analysis of water quality characteristics of sludge pyrolysis syngas condensate washing wastewater[C]//Environmental Engineering, Proceedings of the 2019 National Academic Conference. Beijing: Editorial Department of Environmental Engineering, 2019: 53-55+60(in Chinese). [17] 程国淡,黄 青,张凯松.热解温度和时间对生物干化污泥生物炭性质的影响[J].环境工程学报,2013,7(3):1133-1138. CHENG G D, HUANG Q, ZHANG K S. Effect of temperature and duration of pyrolysis on properties of bio-dried sludge biochar[J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 1133-1138(in Chinese). [18] 杨陶陶.不同热解条件对猪粪中Cu和Zn生物有效性的影响[D].南昌:江西农业大学,2017. YANG T T. Bioavailability of Cu and Zn in pig manure under different pyrolysis conditions[D]. Nanchang: Jiangxi Agricultural University, 2017(in Chinese). [19] 张艺颗.热解法处置以猪肉猪骨为代表的动物类生物质的机理研究[D].杭州:浙江大学,2018. ZHANG Y K. Mechanism study on pyrolytic disposal of animal biomass by using pork and pig bone as the representatives[D]. Hangzhou: Zhejiang University, 2018(in Chinese). [20] WANG Y, HU Y T, ZHAO X, et al. Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times[J]. Energy & Fuels, 2013, 27(10): 5890-5899. [21] TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass: a review of subcritical water technologies[J]. Energy, 2011, 36(5): 2328-2342. [22] 张晓娟.典型废弃生物质水热碳化提质制备多功能生物炭研究[D].大连:大连理工大学,2019. ZHANG X J. Hydrothermal carbonization of typical waste biomasses for the generation of multi-functional biochars[D]. Dalian, China: Dalian University of Technology, 2019(in Chinese). [23] 赵 丹,张 琳,郭 亮,等.水热碳化与干法碳化对剩余污泥的处理比较[J].环境科学与技术,2015,38(10):78-83. ZHAO D, ZHANG L, GUO L, et al. Comparison of hydrothermal carbonization and dry pyrolysis for domestic wastewater sludge treatment[J]. Environmental Science & Technology, 2015, 38(10): 78-83(in Chinese). [24] 彭锦星,刘新媛,鲍振博.生物质的微波热解技术研究进展[J].应用化工,2018,47(7):1499-1503+1508. PENG J X, LIU X Y, BAO Z B. Research progress of microwave pyrolysis technology for biomass[J]. Applied Chemical Industry, 2018, 47(7): 1499-1503+1508(in Chinese). [25] 王 程,张玉全,李治军,等.微波热裂解-KOH活化制备杏壳活性炭及其对甲基橙的吸附性能[J].化工新型材料,2020,48(3):207-212. WANG C, ZHANG Y Q, LI Z J, et al. Preparation of apricot shell AC by microwave pyrolysis-KOH activation and absorption of methyl orange[J]. New Chemical Materials, 2020, 48(3): 207-212(in Chinese). [26] 来雪慧,闫晋宏,郭睿铭,等.微波活化玉米秸秆生物质炭对水中亚甲基蓝的吸附研究[J].山东农业大学学报(自然科学版),2020,51(5):845-851. LAI X H, YAN J H, GUO R M, et al. Study on the adsorption of maize straw biochar activated by a microwave to methylene blue in water[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2020, 51(5): 845-851(in Chinese). [27] MIURA M, KAGA H, SAKURAI A, et al. Rapid pyrolysis of wood block by microwave heating[J]. Journal of Analytical and Applied Pyrolysis, 2004, 71(1): 187-199. [28] 蒋 汶.秸秆活性炭的可控制备及其在食品中的应用研究[D].合肥:合肥工业大学,2020. JIANG W. Controllable preparation of straw activated carbon and its application in food[D]. Hefei: Hefei University of Technology, 2020(in Chinese). [29] 陈晶晶.生物炭/H2O2体系类芬顿方法降解水中亚甲基蓝的效果研究[D].西安:西北大学,2019. CHEN J J. Degradation of methylene blue in water by biochar/H2O2 Fenton-like processes[D]. Xi’an: Northwest University, 2019(in Chinese). [30] YU F W, JI J B, XU Z C, et al. Effect of ultrasonic power on the structure of activated carbon and the activities of Ru/AC catalyst[J]. Ultrasonics, 2006, 44: e389-e392. [31] 金 梁,魏 丹,李玉梅,等.生物炭制备及其稳定性估测方法研究进展[J].农业资源与环境学报,2015,32(5):423-428. JIN L, WEI D, LI Y M, et al. Progress on biochar preparation and its assessement methods of stability[J]. Journal of Agricultural Resources and Environment, 2015, 32(5): 423-428(in Chinese). [32] 王申宛,郑晓燕,校 导,等.生物炭的制备、改性及其在环境修复中应用的研究进展[J].化工进展,2020,39(S2):352-361. WANG S W, ZHENG X Y, XIAO D, et al. Research progress of production, modification and application in environment remediation of biochar[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 352-361(in Chinese). [33] KWON G, CHO D W, TSANG D C W, et al. One step fabrication of carbon supported cobalt pentlandite (Co9S8) via the thermolysis of lignin and Co3O4[J]. Journal of CO2 Utilization, 2018, 27: 196-203. [34] 郭 平,王观竹,许 梦,等.不同热解温度下生物质废弃物制备的生物质炭组成及结构特征[J].吉林大学学报(理学版),2014,52(4):855-860. GUO P, WANG G Z, XU M, et al. Structure and composition characteristics of biochars derived from biomass wastes at different pyrolysis temperatures[J]. Journal of Jilin University (Science Edition), 2014, 52(4): 855-860(in Chinese). [35] LYU H H, GAO B, HE F, et al. Ball-milled carbon nanomaterials for energy and environmental applications[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 9568-9585. [36] 钟晓晓,王 涛,原文丽,等.生物炭的制备、改性及其环境效应研究进展[J].湖南师范大学自然科学学报,2017,40(5):44-50. ZHONG X X, WANG T, YUAN W L, et al. Progresses of preparation, modification and environmental behavior of biochar[J]. Journal of Natural Science of Hunan Normal University, 2017, 40(5): 44-50(in Chinese). [37] 杜甜甜,李 梅,高心雨,等.生物炭的改性方法及其在环境领域的研究进展[J].四川环境,2020,39(5):186-190. DU T T, LI M, GAO X Y, et al. Modification methods of biochar and its research progress in environmental field[J]. Sichuan Environment, 2020, 39(5): 186-190(in Chinese). [38] 胡龙龙,曹 勇,胡友彪.改性生物炭的制备及其环境应用进展[J].江苏农业科学,2020,48(21):46-52. HU L L, CAO Y, HU Y B. Research progress on preparation and environmental application of modified biochar[J]. Jiangsu Agricultural Sciences, 2020, 48(21): 46-52(in Chinese). [39] YAO Y, ZHANG Y, GAO B, et al. Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse[J]. Environmental Science and Pollution Research, 2018, 25(26): 25659-25667. [40] 王 兵,施 斌,来进和,等.高盐有机废水处理研究现状及应用[J].水处理技术,2020,46(3):5-10. WANG B, SHI B, LAI J H, et al. Research status and application of high-salt organic wastewater treatment[J]. Technology of Water Treatment, 2020, 46(3): 5-10(in Chinese). [41] LIU S, XU W H, LIU Y G, et al. Facile synthesis of Cu(Ⅱ) impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water[J]. Science of the Total Environment, 2017, 592: 546-553. [42] 赵 涛.不同生物炭对水中磺胺类抗生素的吸附及机理研究[D].广州:华南农业大学,2016:52-53. ZHAO T. Absorption characteristics and mechanisms of sulfonamides in aquatic solutions by biochars derived from different biomass materials[D]. Guangzhou: South China Agricultural University, 2016: 52-53(in Chinese). [43] 郭航言,何春霞.四种生物炭的理化性质及其对亚甲基蓝吸附性能研究[J].材料开发与应用,2019,34(2):113-119. GUO H Y, HE C X. Study on physicochemical properties of four biochars and their adsorption to methylene blue[J]. Development and Application of Materials, 2019, 34(2): 113-119(in Chinese). [44] REGKOUZAS P, DIAMADOPOULOS E. Adsorption of selected organic micro-pollutants on sewage sludge biochar[J]. Chemosphere, 2019, 224: 840-851. [45] CHEN C P, ZHOU W J, LIN D H. Sorption characteristics of N-nitrosodimethylamine onto biochar from aqueous solution[J]. Bioresource Technology, 2015, 179: 359-366. [46] 丁 艺.基于可再生生物质炭的四环素吸附去除行为机制研究[D].西安:西安建筑科技大学,2020. DING Y. Study on the mechanism of tetracycline adsorption and removal based on renewable biomass charcoal[D]. Xi’an: Xi’an University of Architecture and Technology, 2020(in Chinese). [47] 张涵瑜,王兆炜,高俊红,等.芦苇基和污泥基生物炭对水体中诺氟沙星的吸附性能[J].环境科学,2016,37(2):689-696. ZHANG H Y, WANG Z W, GAO J H, et al. Adsorption characteristics of norfloxacin by biochars derived from reed straw and municipal sludge[J]. Environmental Science, 2016, 37(2): 689-696(in Chinese). [48] 代文静,胡 健,吴 攀,等.生物炭纳米复合材料去除环境中有机污染物研究进展[J].地球与环境,2020,48(3):395-403. DAI W J, HU J, WU P, et al. A review of researches on removal of organic pollutants in the environment by biochar-nanocomposites[J]. Earth and Environment, 2020, 48(3): 395-403(in Chinese). [49] TAN X F, LIU Y G, GU Y L, et al. Biochar-based nano-composites for the decontamination of wastewater: a review[J]. Bioresource Technology, 2016, 212: 318-333. [50] LI H Q, HU J T, WANG X J, et al. Development of a bio-inspired photo-recyclable feather carbon adsorbent towards removal of amoxicillin residue in aqueous solutions[J]. Chemical Engineering Journal, 2019, 373: 1380-1388. [51] LIBRA J A, RO K S, KAMMANN C, et al. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis[J]. Biofuels, 2011, 2(1): 71-106. [52] 毕文欣,张秀芳,王冠龙.铁改性花生壳生物质的制备及其对磺胺甲恶唑的光催化性能[J/OL].大连工业大学学报,2021,37(1):1-5(2021-3-23) [2021-6-12].https://doi.org/10.19670/j.cnki.dlgydxxb.2021.6004. BI W X, ZHANG X X, WANG G L. Preparation of Fe modified peanut shell biomass and its photocatalytic performance for sulfamethoxazole degradation[J/OL]. Journal of Dalian Polytechnic University,2021,37(1): 1-5(2021-3-23) [2021-6-12]. https://doi.org/10.19670/j.cnki.dlgydxxb.2021.6004. [53] LI H Q, HU J T, ZHOU X, et al. An investigation of the biochar-based visible-light photocatalyst via a self-assembly strategy[J]. Journal of Environmental Management, 2018, 217: 175-182. [54] 姚 鑫.生物炭基BiOI复合材料的制备及光催化降解有机染料性能研究[D].镇江:江苏大学,2018. YAO X. Preparation of BiOI composite material based on biochar and study on performance of photocatalytic degradation over organic dyes[D]. Zhenjiang, China: Jiangsu University, 2018(in Chinese). [55] ZHANG H Y, WANG Z W, LI R N, et al. TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices[J]. Chemosphere, 2017, 185: 351-360. [56] 张 隐,黄慧玲,魏留洋,等.生物质炭/ZnO复合材料的制备及其吸附-光催化性能[J].复合材料学报,2019,36(9):2187-2195. ZHANG Y, HUANG H L, WEI L Y, et al. Preparation and adsorption-photocatalysis properties of biochar/ZnO composites[J]. Acta Materiae Compositae Sinica, 2019, 36(9): 2187-2195(in Chinese). [57] 谷 麟,章 凯,俞海祥,等.污泥碳基催化材料的合成及在水环境中的应用[J].化学进展,2020,32(9):1412-1426. GU L, ZHANG K, YU H X, et al. Synthesis of sludge carbon-based catalytic materials and their application in water environment[J]. Progress in Chemistry, 2020, 32(9): 1412-1426(in Chinese). [58] GU L, ZHU N W, GUO H Q, et al. Adsorption and Fenton-like degradation of naphthalene dye intermediate on sewage sludge derived porous carbon[J]. Journal of Hazardous Materials, 2013, 246/247: 145-153. [59] RUBEENA K K, HARI PRASAD REDDY P, LAIJU A R, et al. Iron impregnated biochars as heterogeneous Fenton catalyst for the degradation of acid red 1 dye[J]. Journal of Environmental Management, 2018, 226: 320-328. [60] 张媛媛.生物炭促进针铁矿类芬顿氧化降解氧氟沙星研究[D].大连:大连理工大学,2020. ZHANG Y Y. Acceleration of goethite-catalyzed Fenton-like oxidation of ofloxacin by biochar[D]. Dalian: Dalian University of Technology, 2020(in Chinese). [61] 罗 浩.生物炭类芬顿体系处理抗生素污染废水的机理研究[D].长沙:湖南大学,2019. LUO H. The study about the mechanisms of biochar-mediated Fenton-like systems in the treatment of wastewater contaminated with antibiotics[D]. Changsha: Hunan University, 2019(in Chinese). [62] 安 婧.印染污泥水热炭制备及在印染废水处理中的应用研究[D].上海:东华大学,2019. AN J. Preparation of printing and dyeing sludge hydrothermal carbon and its application in printing and dyeing wastewater treatment[D]. Shanghai: Donghua University, 2019(in Chinese). [63] 鲍晓磊,赵地顺,武 彤,等.微波催化原理及其应用进展[C]//第四届全国工业催化技术及应用年会论文集.广州,2007:108-110. BAO X L, ZHAO D S, WU T, et al. Principle and application progress of microwave catalysis[C]//Proceedings of the Fourth National Annual Conference on industrial catalysis technology and application Guangzhou, 2007:108-110(in Chinese). [64] 蒋尊芳.微波催化剂的制备及微波催化氧化降解有机废水的研究[D].湘潭:湘潭大学,2012. JIANG Z F. Study on the preparation of microwave catalyst and microwave catalytic oxidation degradation of organic wastewater[D]. Xiangtan, China: Xiangtan University, 2012(in Chinese). [65] 吝美霞.生物炭负载改性g-C3N4对土壤中石油烃的光催化与微波降解作用研究[D].抚顺:辽宁石油化工大学,2019. LIN M X. Photocatalysis and microwave degradation of petroleum hydrocarbons in soil by biochar-supported modified g-C3N4[D]. Fushun, China: Liaonign Shihua University, 2019(in Chinese). [66] 沈天瑶.改性生物炭吸附4-氯酚及微波活化PDS处理吸附剂效能研究[D].哈尔滨:哈尔滨工业大学,2020. SHEN T Y. Research on adsorption of 4-chlorophenol by modified biochar and treatment efficiency of adsorbent by microwave activating PDS[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese). [67] 卫栋慧,侯 笛,魏徵文,等.复合光催化材料的制备及对染料废水的处理研究[J].应用化工,2020,49(9):2164-2167. WEI D H, HOU D, WEI Z W, et al. Preparation of composite photocatalytic materials and treatment of dye wastewater[J]. Applied Chemical Industry, 2020, 49(9): 2164-2167(in Chinese). [68] 林鑫辰,于晓丹,肖成龙,等.Fe3O4@生物炭磁性材料光-类Fenton降解水中盐酸四环素[J].环境科学与技术,2019,42(5):89-93. LIN X C, YU X D, XIAO C L, et al. Preparation of Fe3O4@Biological carbon magnetic material and photo-Fenton-like synergistic degradation of tetracycline hydrochloride in water[J]. Environmental Science & Technology, 2019, 42(5): 89-93(in Chinese). [69] 吴 丹.Fe3O4/生物质碳阴极电降解抗生素废水的技术研究[D].哈尔滨:黑龙江大学,2018. WU D. Electrochemical degradation of antibiotic wastewater by Fe3O4/Biomass carbon cathode technical research[D]. Harbin: Helongjiang University, 2018(in Chinese). |
[1] | 李佩欣, 辛浪, 宋佳, 杨爱云, 崔娟, 殷春浩. 稀土金属Ce3+掺杂ZnO材料的光催化机理[J]. 人工晶体学报, 2021, 50(9): 1723-1728. |
[2] | 李瑞, 张潇, 张璐璐, 谢芳霞, 张小超, 王雅文, 樊彩梅. 原位合成Bi3O4Br/Bi12O17Br2光催化剂及其对磺胺甲噁唑降解性能[J]. 人工晶体学报, 2021, 50(9): 1735-1744. |
[3] | 陈心怡, 程宏飞, 赵炳新, 胡棉舒, 贾晓辉. 高岭石基介孔复合材料的二氧化碳吸附性能[J]. 人工晶体学报, 2021, 50(9): 1756-1764. |
[4] | 张静, 师倩莹, 龚浩, 郭雨菲, 张卫珂. MCNOs/CdS双效光催化剂的制备及其性能研究[J]. 人工晶体学报, 2021, 50(8): 1485-1495. |
[5] | 张玉杰, 肖凤艳, 赵斌. Ru@Pt/CNTs纳米粒子的制备及催化乙醇氧化电化学活性的研究[J]. 人工晶体学报, 2021, 50(8): 1496-1502. |
[6] | 李悦, 姜宏, 蔡思翔. 钒改性对铁基脱硝催化剂活性及抗碱性能的影响[J]. 人工晶体学报, 2021, 50(8): 1511-1517. |
[7] | 葛薛豪, 吴静, 邢栋梁, 潘闻景, 张宇林, 蒋青松. NiCoSe4薄膜制备及其在染料敏化太阳能电池中的应用[J]. 人工晶体学报, 2021, 50(6): 1062-1069. |
[8] | 顾洋, 王朕, 吴宏坤, 肖杰, 曾晓苑. 锂-二氧化碳电池关键材料的研究进展[J]. 人工晶体学报, 2021, 50(6): 1170-1179. |
[9] | 张众, 杨琳, 李晓慧, 王梓兰, 王静怡. 草酸配体修饰的锆取代型硅钨-氧簇合物的合成、结构和电化学性质研究[J]. 人工晶体学报, 2021, 50(5): 884-888. |
[10] | 王泽岩, 王朋, 刘媛媛, 郑昭科, 程合锋, 黄柏标. 基于晶体学原理的高效光催化材料的设计与制备[J]. 人工晶体学报, 2021, 50(4): 685-707. |
[11] | 顾洋, 王朕, 李雪, 肖杰, 曾晓苑. 碳纳米管负载RuO2纳米颗粒的制备及其Li-CO2电池性能[J]. 人工晶体学报, 2021, 50(3): 542-547. |
[12] | 简小刚, 唐金垚, 马千里, 胡吉博, 尹明睿. CVD金刚石薄膜亚表面层氢杂质对表面活化反应的影响[J]. 人工晶体学报, 2021, 50(2): 302-309. |
[13] | 林晓霞, 李慧, 付德刚. 还原氧化石墨烯/TiO2纳米线复合膜的制备及对Cu2+吸附性的影响[J]. 人工晶体学报, 2021, 50(2): 318-324. |
[14] | 王祖华, 刘萍, 杨瑞先, 陈华军. 绿色合成载银壳聚糖及其等温线、动力学及抑菌性[J]. 人工晶体学报, 2021, 50(12): 2307-2315. |
[15] | 张海峰, 王彬, 程彩萍, 伊思静. 第一性原理研究Ag掺杂及缺陷共存对ZnO光催化性质的影响[J]. 人工晶体学报, 2021, 50(11): 2027-2035. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||