[1] RASHID M, HUSSAIN F, IMRAN M, et al. Structural, electronic, and optical properties of ZnO1-xSex alloys using first-principles calculations[J]. Chinese Physics B, 2013, 22(8): 087301. [2] VENKATESAN M, FITZGERALD C B, LUNNEY J G, et al. Anisotropic ferromagnetism in substituted zinc oxide[J]. Phys Rev Lett, 2004, 93(17): 177206. [3] WANG X, CHEN X, DONG R, et al. Ferromagnetism in carbon-doped ZnO films from first-principle study[J]. Physics Letters A, 2009, 373(34): 3091-3096. [4] SOWJANYA M, SHARIQ M, ALAJLANI Y, et al. Structural and optical properties of pure wurtzite ZnO under uniaxial strain based on first-principles study[J]. Acta Physica Polonica A, 2020, 137(3): 361-367. [5] WU Q, WANG P, LIU Y, et al. First-principles calculations of the electronic structure and optical properties of yttrium-doped ZnO monolayer with vacancy[J]. Materials (Basel), 2020, 13(3): 723. [6] CERRATO E, GIONCO C, PAGANINI M C, et al. Photoactivity properties of ZnO doped with cerium ions: an EPR study[J]. Journal of Physics: Condensed Matter, 2017, 29(44): 444001. [7] JIAO S J, ZHANG Z Z, LU Y M, et al. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates[J]. Applied Physics Letters, 2006, 88(3): 031911. [8] ÖZGÜR Ü, ALIVOV Y I, LIU C, et al. A comprehensive review of ZnO materials and devices[J]. Journal of Applied Physics, 2005, 98(4): 041301. [9] ZHANG B Y, YAO B, LI Y F, et al. Investigation on the formation mechanism of p-type Li-N dual-doped ZnO[J]. Applied Physics Letters, 2010, 97(22): 222101. [10] WANG J, SHEN T, FENG Y, et al. A GGA+U study of electronic structure and the optical properties of different concentrations Tb doped ZnO[J]. Physica B: Condensed Matter, 2020, 576: 411720. [11] LAHMER M A. The effect of doping with rare earth elements (Sc, Y, and La) on the stability, structural, electronic and photocatalytic properties of the O-terminated ZnO surface; first-principles study[J]. Applied Surface Science, 2018, 457: 315-322. [12] LANG J, LI X, YANG J, et al. Rapid synthesis and luminescence of the Eu3+, Er3+ co-doped ZnO quantum-dot chain via chemical precipitation method[J]. Applied Surface Science, 2011, 257(22): 9574-9577. [13] Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension[J]. Journal of Molecular Catalysis A: Chemical, 2007, 266(1): 149-157. [14] SAXENA N, MANZHI P, CHOUDHARY R J, et al. Performance optimization of transparent and conductive Zn1-xAlxO thin films for opto-electronic devices: An experimental & first-principles investigation[J]. Vacuum, 2020, 177: 109369. [15] LI J C, LI Y F, YANG T, et al. Effects of S on solid solubility of Ag and electrical properties of Ag-doped ZnO films grown by radio frequency magnetron sputtering[J]. Journal of Alloys and Compounds, 2013, 550: 479-482. [16] DAVYDYUK G E, KHYZHUN O Y, RESHAK A H, et al. Photoelectrical properties and the electronic structure of Tl(1-x)In(1-x)Sn(x)Se2(x=0, 0.1, 0.2, 0.25) single crystalline alloys[J]. Phys Chem Chem Phys, 2013, 15(18): 6965-72. [17] RESHAK A H, KOGUT Y M, FEDORCHUK A O, et al. Linear, non-linear optical susceptibilities and the hyperpolarizability of the mixed crystals Ag(0.5)Pb(1.75)Ge(S(1-x)Se(x))4:experiment and theory[J]. Phys Chem Chem Phys, 2013, 15(43): 18979-86. [18] RESHAK A H. Ab initio study of TaON, an active photocatalyst under visible light irradiation[J]. Phys Chem Chem Phys, 2014, 16(22): 10558-65. [19] LASKOWSKI R, CHRISTENSEN N E, BLAHA P, et al. Strong excitonic effects in CuAlO2 delafossite transparent conductive oxides[J]. Physical Review B, 2009, 79(16): 165209. [20] WANG Q B, ZHOU C, CHEN L, et al. The optical properties of NiAs phase ZnO under pressure calculated by GGA+U method[J]. Optics Communications, 2014, 312185-191. [21] BASHYAL K, PYLES C K, AFROOSHEH S, et al. Empirical optimization of DFT+U and HSE for the band structure of ZnO[J]. Journal of Physics: Condensed Matter, 2018, 30(6): 065501. [22] ABBASSI A, EL AMRANI A, EZ-ZAHRAOUY H, et al. First-principles study on the electronic and optical properties of Si and Al co-doped zinc oxide for solar cell devices[J]. Applied Physics A, 2016, 122(6): 584. [23] ADENIS C, LANGER V, LINDQVIST O. Reinvestigation of the structure of tellurium[J]. Acta Crystallographica Section C, 1989, 45(6): 941-942. [24] LIU W W, LIU C L, CHEN X B, et al. First-principles study on electronic and optical properties of S, N single-doped and S-N co-doped ZnO[J]. Physics Letters A, 2020, 384(8): 126172. [25] LOOK D C, REYNOLDS D C, LITTON C W, et al. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy[J]. Applied Physics Letters, 2002, 81(10): 1830-1832. [26] WANG Y, YAN L, JI G, et al. Synthesis of N, S-doped carbon quantum dots for use in organic solar cells as the ZnO modifier to eliminate the light-soaking effect[J]. ACS Appl Mater Interfaces, 2019, 11(2): 2243-2253. |