[1] CUMMER S A, CHRISTENSEN J, ALÙ A. Controlling sound with acoustic metamaterials[J]. Nature Reviews Materials, 2016, 1(3): 1-13. [2] 程建春.声学原理[M].北京:科学出版社,2012. CHENG J C. Acoustics principle[M]. Beijing: Science Press, 2012(in Chinese). [3] 杜功焕,朱哲民,龚秀芬.声学基础[M]. 南京: 南京大学出版社, 2003. DU G H, ZHU Z M, GONG X F. Fundamentals of acoustics[M]. Nanjing: Nanjing University Press, 2003(in Chinese). [4] LIU T, MA G C, LIANG S J, et al. Single-sided acoustic beam splitting based on parity-time symmetry[J]. Physical Review B, 2020, 102: 014306. [5] HAN X K, ZHANG Z. Acoustic beam controlling in water by the design of phononic crystal[J]. Extreme Mechanics Letters, 2020, 34: 100602. [6] BUCAY J, ROUSSEL E, VASSEUR J O, et al. Positive, negative, zero refraction, and beam splitting in a solid/air phononic crystal: theoretical and experimental study[J]. Physical Review B, 2009, 79(21): 214305. [7] GRACIÁ-SALGADO R, GARCÍA-CHOCANO V M, TORRENT D, et al. Negative mass density and ρ-near-zero quasi-two-dimensional metamaterials: design and applications[J]. Physical Review B, 2013, 88(22): 224305. [8] YAN X X, WEI W, HU N, et al. Splitting of acoustic energy by zero index metamaterials[J]. Physics Letters A, 2015, 379(37): 2147-2149. [9] EPSTEIN A, ELEFTHERIADES G V. Synthesis of passive lossless metasurfaces using auxiliary fields for reflectionless beam splitting and perfect reflection[J]. Physical Review Letters, 2016, 117(25): 256103. [10] WANG X C, DÍAZ-RUBIO A, TRETYAKOV S A. Independent control of multiple channels in metasurface devices[J]. Physical Review Applied, 2020, 14(2): 024089. [11] ASADCHY V S, DÍAZ-RUBIO A, TCVETKOVA S N, et al. Flat engineered multichannel reflectors[J]. Physical Review X, 2017, 7(3): 031046. [12] KWON D H, TRETYAKOV S A. Perfect reflection control for impenetrable surfaces using surface waves of orthogonal polarization[J]. Physical Review B, 2017, 96(8): 085438. [13] WANG K, SHAO W, DING X, et al. Design method of passive lossless metasurfaces with auxiliary waves for beam control[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(5): 4126-4131. [14] FANG X S, WANG X, LI Y. Acoustic splitting and bending with compact coding metasurfaces[J]. Physical Review Applied, 2019, 11(6): 064033. [15] XU Y L, CAO L Y, PENG P, et al. Beam splitting of flexural waves with a coding meta-slab[J]. Applied Physics Express, 2019, 12(9): 097002. [16] CAO S T, HOU Z L. Angular-asymmetric transmitting metasurface and splitter for acoustic waves: combining the coherent perfect absorber and a laser[J]. Physical Review Applied, 2019, 12(6): 064016. [17] FU Y Y, TAO J Q, SONG A L, et al. Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings[J]. Frontiers of Physics, 2020, 15(5): 1-6. [18] NI H Q, FANG X S, HOU Z L, et al. High-efficiency anomalous splitter by acoustic meta-grating[J]. Physical Review B, 2019, 100(10): 104104. [19] DÍAZ-RUBIO A, LI J F, SHEN C, et al. Power flow-conformal metamirrors for engineering wave reflections[J]. Science Advances, 2019, 5(2): eaau7288. DOI:10.1126/sciadv.aau7288. [20] LI J F, SONG A L, CUMMER S A. Bianisotropic acoustic metasurface for surface-wave-enhanced wavefront transformation[J]. Physical Review Applied, 2020, 14(4): 044012. [21] LI J F, SHEN C, DÍAZ-RUBIO A, et al. Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts[J]. Nature Communications, 2018, 9: 1342. [22] LI J F, DÍAZ-RUBIO A, SHEN C, et al. Highly efficient generation of angular momentum with cylindrical bianisotropic metasurfaces[J]. Physical Review Applied, 2019, 11(2): 024016. |