[1] 张 杰.浅谈惯性约束核聚变[J].物理,1999,28(3):142-152. ZHANG J. An overview of inertial confinement fusion[J]. Physics, 1999, 28(3): 142-152 (in Chinese). [2] 范滇元,贺贤土.惯性约束聚变能源与激光驱动器[J].大自然探索,1999(1):31-35. FAN D Y, HE X T. Inertial confinement fusion energy and the laser driver[J]. Exploration of Nature, 1999(1): 31-35(in Chinese). [3] MOSES E I. Advances in inertial confinement fusion at the National Ignition Facility (NIF)[J]. Fusion Engineering and Design, 2010, 85(7/8/9): 983-986. [4] SPAETH M L, MANES K R, KALANTAR D H, et al. Description of the NIF laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145. [5] 张小民,魏晓峰.中国新一代巨型高峰值功率激光装置发展回顾[J].中国激光,2019,46(1):0100003. ZHANG X M, WEI X F. Review of new generation of huge-scale high peak power laser facility in China[J]. Chinese Journal of Lasers, 2019, 46(1): 0100003(in Chinese). [6] 魏晓峰,郑万国,张小民.中国高功率固体激光技术发展中的两次突破[J].物理,2018,47(2):73-83. WEI X F, ZHENG W G, ZHANG X M. Two breakthroughs in the development of high power solid-state laser technology in China[J]. Physics, 2018, 47(2): 73-83(in Chinese). [7] 郑万国,邓 颖,周 维,等.激光聚变研究中心激光技术研究进展[J].强激光与粒子束,2013,25(12):3082. ZHENG W G, DENG Y, ZHOU W, et al. Development of laser technology in research center of laser fusion[J]. High Power Laser and Particle Beams, 2013, 25(12): 3082(in Chinese). [8] ZHU Q H, ZHOU K N, SU J Q, et al. The Xingguang-{Ⅲ} laser facility: precise synchronization with femtosecond, picosecond and nanosecond beams[J]. Laser Physics Letters, 2017, 15(1): 015301. [9] 朱健强,陈绍和,郑玉霞,等.神光Ⅱ激光装置研制[J].中国激光,2019,46(1):0100002. ZHU J Q, CHEN S H, ZHENG Y X, et al. Review on development of Shenguang-Ⅱ laser facility[J]. Chinese Journal of Lasers, 2019, 46(1): 0100002(in Chinese). [10] DANSON C N, HAEFNER C, BROMAGE J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. DOI:10.1017/hpl.2019.36. [11] BAYRAMIAN A, ARMSTRONG P, AULT E, et al. The mercury project: a high average power, gas-cooled laser for inertial fusion energy development[J]. Fusion Science and Technology, 2007, 52(3): 383-387. [12] MASON P, DIVOKÝM, ERTEL K, et al. Kilowatt average power 100 J-level diode pumped solid state laser[J]. Optica, 2017, 4(4): 438-439. [13] BAYRAMIAN A, ACEVES S, ANKLAM T, et al. Compact, efficient laser systems required for laser inertial fusion energy[J]. Fusion Science and Technology, 2011, 60(1): 28-48. [14] ZHENG J G, JIANG X Y, YAN X W, et al. Progress of the 10 J water-cooled Yb∶YAG laser system in RCLF[J]. High Power Laser Science and Engineering, 2014, 2: e27. DOI:10.1017/hpl.2014.29. [15] GONÇALVÈS-NOVO T, ALBACH D, VINCENT B, et al. 14 J / 2 Hz Yb3+∶YAG diode pumped solid state laser chain[J]. Optics Express, 2013, 21(1): 855. [16] WENG Z H, RUAN J J, LIN S H, et al. Fast magneto-optic switch based on nanosecond pulses[C]//2011: 095001. [17] 曾庆高,张泽红,高维松,等.石英声光开关[J].压电与声光,2019,41(2):188-191. ZENG Q G, ZHANG Z H, GAO W S, et al. Quartz acoustooptic switch[J]. Piezoelectrics & Acoustooptics, 2019, 41(2): 188-191(in Chinese). [18] 董潮涌,商继芳,孙 军,等.50 Hz铌酸锂电光调Q开关[J].人工晶体学报,2018,47(3):539-543. DONG C Y, SHANG J F, SUN J, et al. 50 Hz electro-optic Q-switch made of LiNbO3[J]. Journal of Synthetic Crystals, 2018, 47(3): 539-543(in Chinese). [19] 张昊天,窦仁勤,张庆礼,等.磁光晶体的研究进展及应用[J].人工晶体学报,2020,49(2):346-352+357. ZHANG H T, DOU R Q, ZHANG Q L, et al. Research progress and applications of magneto-optical crystal[J]. Journal of Synthetic Crystals, 2020, 49(2): 346-352+357(in Chinese). [20] ZHANG X M, WEI X F, LI M Z, et al. Bidirectional amplifying architecture with twin pulses for laser fusion facilities[J]. Laser Physics Letters, 2013, 10(11): 115803. [21] 陶绪堂,王善朋,王 蕾,等.晶体材料研究:从体块晶体到微纳米晶体[J].人工晶体学报,2019,48(5):763-786. TAO X T, WANG S P, WANG L, et al. Research in crystal materials: from bulk crystals to micro-nano crystals[J]. Journal of Synthetic Crystals, 2019, 48(5): 763-786(in Chinese). [22] 郑大怀,吴 婧,商继芳,等.电光调Q晶体研究进展[J].中国科学:技术科学,2017,47(11):1139-1148. ZHENG D H, WU J, SHANG J F, et al. Progress on electro-optic crystals for Q-switches[J]. Scientia Sinica (Technologica), 2017, 47(11): 1139-1148(in Chinese). [23] 陈建荣,杨春和,袁 雷,等.高抗灰迹KTP晶体生长与性能研究[J].人工晶体学报,2012,41(S1):124-127. CHEN J R, YANG C H, YUAN L, et al. Crystal growth and properties of high gray track resistance KTP crystal[J]. Journal of Synthetic Crystals, 2012, 41(S1): 124-127(in Chinese). [24] 沈德忠.KTP晶体的电光研究进展[J].人工晶体学报,2001,30(1):28-35. SHEN D Z. Progress in E-O research for KTP crystals[J]. Journal of Synthetic Crystals, 2001, 30(1): 28-35(in Chinese). [25] 孙 军,郝永鑫,张 玲,等.铌酸锂晶体及其应用概述[J].人工晶体学报,2020,49(6):947-964. SUN J, HAO Y X, ZHANG L, et al. Brief review of lithium niobate crystal and its applications[J]. Journal of Synthetic Crystals, 2020, 49(6): 947-964(in Chinese). [26] 张 旭,薛冬峰,Kitamura Kenji.铌酸锂晶体的生长研究[J].人工晶体学报,2005,34(4):720-724. ZHANG X, XUE D F, KENJI K. Growth study on lithium niobate single crystals[J]. Journal of Synthetic Crystals, 2005, 34(4): 720-724(in Chinese). [27] PERLOV D, LIVNEH S, CZECHOWICZ P, et al. Progress in growth of large β-BaB2O4 single crystals[J]. Crystal Research and Technology, 2011, 46(7): 651-654. [28] LIU B A, HU G H, ZHAO Y, et al. Laser induced damage of DKDP crystals with different deuterated degrees[J]. Optics & Laser Technology, 2013, 45: 469-472. [29] 王端良,李廷斌,张光辉,等.大尺寸KDP/DKDP晶体的非线性吸收研究[J].人工晶体学报,2014,43(10):2492-2496. WANG D L, LI T B, ZHANG G H, et al. Research on nonlinear optical absorption of large-aperture KDP/DKDP crystals[J]. Journal of Synthetic Crystals, 2014, 43(10): 2492-2496(in Chinese). [30] 王 波,房昌水,王圣来,等.KDP/DKDP晶体生长的研究进展[J].人工晶体学报,2007,36(2):247-252. WANG B, FANG C S, WANG S L, et al. Progresses of study on the KDP/DKDP crystals growth[J]. Journal of Synthetic Crystals, 2007, 36(2): 247-252(in Chinese). [31] ZHANG L S, YU G W, ZHOU H L, et al. Study on rapid growth of 98% deuterated potassium dihydrogen phosphate (DKDP) crystals[J]. Journal of Crystal Growth, 2014, 401: 190-194. [32] 孙 洵,许心光,王正平,等.快速生长KDP晶体的光学性质研究[J].人工晶体学报,2002,31(5):440-444. SUN X, XU X G, WANG Z P, et al. Study on the optical properties of rapidly grown KDP crystals[J]. Journal of Synthetic Crystals, 2002, 31(5): 440-444(in Chinese). [33] AN C H, FENG K, WANG W, et al. Study on thermal field in fly-cutting process of DKDP crystal[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(5/6/7/8): 3013-3024. [34] 沈 斌,李海元,张 旭.旋涂法涂制溶胶凝胶改性SiO2减反膜性能研究[J].激光与光电子学进展,2019,56(14):141602. SHEN B, LI H Y, ZHANG X. Properties of Sol-gel-modified SiO2 antireflective films by spin coating[J]. Laser & Optoelectronics Progress, 2019, 56(14): 141602(in Chinese). [35] GOLDHAR J, HENESIAN M A. Electro-optical switches with plasma electrodes[J]. Optics Letters, 1984, 9(3): 73-75. [36] RHODES M A, WOODS B, DEYOREO J J, et al. Performance of large-aperture optical switches for high-energy inertial-confinement fusion lasers[J]. Applied Optics, 1995, 34(24): 5312-5325. [37] ARNOLD P A, OLLIS C W, HINZ A F, et al. Deployment, commissioning, and operation of plasma electrode Pockels cells in the National Ignition Facility[C]//Proc SPIE 5341, Optical Engineering at the Lawrence Livermore National Laboratory Ⅱ: the National Ignition Facility, 2004, 5341: 156-167. [38] 鲁敬平,吕传信,张雄军,等.等离子体电极电光开关实验研究[J].强激光与粒子束,1997,9(1):72 LU J P, LÜ C X, ZHANG X J, et al. Experimental investigation on electro-optical switch using plasma electrodes[J]. High Power Laser & Particle Beams, 1997, 9(1): 72(in Chinese). [39] GARDELLE J, PASINI E. A simple operation of a plasma-electrode Pockel's cell for the laser megajoules[J]. Journal of Applied Physics, 2002, 91(5): 2631-2636. [40] ZHANG J, WU D S, ZHENG J G, et al. Single-pulse driven, large-aperture 2×1 array plasma-electrodes optical switch for SG-Ⅱ upgrading facility[C]//Proc SPIE 9294, International Symposium on Optoelectronic Technology and Application 2014: Development and Application of High Power Lasers, 2014, 9294: 92940 N. [41] ANDREEV N F, BABIN A A, DAVYDOV V S, et al. Wide-aperture plasma-electrode Pockels cell[J]. Plasma Physics Reports, 2011, 37(13): 1219-1224. [42] BOCHKOV E I, BABICH L P, BEL'KOV S A, et al. Computation of optimal operation voltage of the neon-filled plasma Pockels cell[J]. IEEE Transactions on Plasma Science, 2020, 48(9): 3122-3127. [43] ZHANG X J, WU D S, ZHANG J, et al. One-pulse driven plasma Pockels cell with DKDP crystal for repetition-rate application[J]. Optics Express, 2009, 17(19): 17164. [44] ZHOU X J, GUO W Q, ZHANG X J, et al. One-dimensional model of a plasma-electrode optical switch driven by one-pulse process[J]. Optics Express, 2006, 14(7): 2880-2887. [45] ANDREEV N F, BESPALOV V I, BREDIKHIN V I, et al. A wide-aperture Pockels cell with three ring electrodes[J]. Quantum Electronics, 2004, 34(4): 381-384. [46] KURTEV S Z, DENCHEV O E, SAVOV S D. Effects of thermally induced birefringence in high-output-power electro-optically Q-switched Nd∶YAG lasers and their compensation[J]. Applied Optics, 1993, 32(3): 278-285. [47] 张雄军,吴登生,鲁敬平,等.高平均功率热补偿电光开关[J].激光与光电子学进展,2005,42(10):36-40. ZHANG X J, WU D S, LU J P, et al. High average power electro-optical switches with thermal compensation[J]. Laser & Optronics Progress, 2005, 42(10): 36-40(in Chinese). [48] WEAVER L F, PETTY C S, EIMERL D. Multikilowatt Pockels cell for high average power laser systems[J]. Journal of Applied Physics, 1990, 68(6): 2589-2598. [49] CAO D X, ZHANG X J, ZHENG W G, et al. Thermal distortion and birefringence in repetition-rate plasma electrode Pockels cell for high average power[J]. Chinese Optics Letters, 2007, 5(5): 292-294. [50] ZHANG J, ZHANG X J, WU D S, et al. A reflecting Pockels cell with aperture scalable for high average power multipass amplifier systems[J]. Optics Express, 2010, 18(S2): A185. [51] ZHANG J, ZHANG X J, ZHENG J G, et al. Aperture scalable, high-average power capable, hybrid-electrode Pockels cell[J]. Optics Letters, 2017, 42(9): 1676-1679. |