[1] FISHER G, SEACRIST M R, STANDLEY R W. Silicon crystal growth and wafer technologies[J]. Proceedings of the IEEE, 2012, 100(Special Centennial Issue): 1454-1474. [2] THOMPSON S E, PARTHASARATHY S. Moore's law: the future of Si microelectronics[J]. Materials Today, 2006, 9(6): 20-25. [3] 孙生柳,黄文奇,张立鑫,等.硅基Ⅳ族SiGeSn三元合金晶格结构、电子结构和光学性质的第一性原理[J].人工晶体学报,2021,50(12):2232-2239+2254. SUN S L, HUANG W Q, ZHANG L X, et al. First-principles study on lattice structure, electronic structure and optical properties of group-Ⅳ SiGeSn ternary alloy[J]. Journal of Synthetic Crystals, 2021, 50(12): 2232-2239+2254(in Chinese). [4] CLARKE J T, GÉRARD J C, GRODENT D, et al. Morphological differences between Saturn's ultraviolet aurorae and those of Earth and Jupiter[J]. Nature, 2005, 433(7027): 717-719. [5] RONG H S, LIU A S, JONES R, et al. An all-silicon Raman laser[J]. Nature, 2005, 433(7023): 292-294. [6] NG W L, LOURENÇO M A, GWILLIAM R M, et al. An efficient room-temperature silicon-based light-emitting diode[J]. Nature, 2001, 410(6825): 192-194. [7] PILLAI S, CATCHPOLE K R, TRUPKE T, et al. Enhanced emission from Si-based light-emitting diodes using surface plasmons[J]. Applied Physics Letters, 2006, 88(16): 161102. [8] ZHOU Z P, YIN B, MICHEL J. On-chip light sources for silicon photonics[J]. Light: Science & Applications, 2015, 4(11): e358. [9] KNEISSL M, SEONG T Y, HAN J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies[J]. Nature Photonics, 2019, 13(4): 233-244. [10] KOSTEN E D, ATWATER J H, PARSONS J, et al. Highly efficient GaAs solar cells by limiting light emission angle[J]. Light: Science & Applications, 2013, 2(1): e45. [11] PARK J S, TANG M C, CHEN S M, et al. Heteroepitaxial growth of Ⅲ-V semiconductors on silicon[J]. Crystals, 2020, 10(12): 1163. [12] JALALI B, FATHPOUR S. Silicon photonics[J]. Journal of Lightwave Technology, 2006, 24(12): 4600-4615. [13] LI Q, LAU K M. Epitaxial growth of highly mismatched Ⅲ-V materials on (001) silicon for electronics and optoelectronics[J]. Progress in Crystal Growth and Characterization of Materials, 2017, 63(4): 105-120. [14] KUNERT B, MOLS Y, BARYSHNISKOVA M, et al. How to control defect formation in monolithic Ⅲ/V hetero-epitaxy on (100) Si? A critical review on current approaches[J]. Semiconductor Science and Technology, 2018, 33(9): 093002. [15] KROEMER H. Polar-on-nonpolar epitaxy[J]. Journal of Crystal Growth, 1987, 81(1/2/3/4): 193-204. [16] YE T, SUO Z, EVANS A G. Thin film cracking and the roles of substrate and interface[J]. International Journal of Solids and Structures, 1992, 29(21): 2639-2648. [17] BOGUMILOWICZ Y, HARTMANN J M, CIPRO R, et al. Anti-phase boundaries-Free GaAs epilayers on “quasi-nominal” Ge-buffered silicon substrates[J]. Applied Physics Letters, 2015, 107(21): 212105. [18] DU Y, XU B Q, WANG G L, et al. Review of highly mismatched Ⅲ-V heteroepitaxy growth on (001) silicon[J]. Nanomaterials, 2022, 12(5): 741. [19] TAKANO Y, KANAYA Y, KAWAI T, et al. Solid phase epitaxial growth of GaAs on Si(111)[J]. Applied Physics Letters, 1990, 56(17): 1664-1666. [20] OHTAKE A, MITSUISHI K. Polarity controlled InAs{111}films grown on Si(111)[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2011, 29(3): 031804. [21] MICCOLI I, PRETE P, MARZO F, et al. Synthesis of vertically-aligned GaAs nanowires on GaAs/(111)Si hetero-substrates by metalorganic vapour phase epitaxy[J]. Crystal Research and Technology, 2011, 46(8): 795-800. [22] BAKKERS E P A M, BORGSTRÖM M T, VERHEIJEN M A. Epitaxial growth of Ⅲ-V nanowires on group Ⅳ substrates[J]. MRS Bulletin, 2007, 32(2): 117-122. [23] WINTERFELD L, KOPPKA C, ABOU-RAS D, et al. Mechanism of twin-reduced Ⅲ-V epitaxy on As-modified vicinal Si(111)[J]. Physical Review Materials, 2018, 2(12): 124601. [24] TOYOTA H, MIKAMI A, ENDOH T, et al. Effect of Sb template layer on GaSb thin films grown on Si(111) substrate by molecular beam epitaxy[J]. Physica Status Solidi C, 2011, 8(2): 269-271. [25] WEN L, GAO F L, ZHANG X N, et al. Effect of InGaAs interlayer on the properties of GaAs grown on Si (111) substrate by molecular beam epitaxy[J]. Journal of Applied Physics, 2014, 116(19): 193508. [26] MOROHARA O, GEKA H, MORIYASU Y, et al. Sb irradiation effect on growth of GaAs thin film on Si (111) substrate[J]. Journal of Crystal Growth, 2013, 378: 113-116. [27] GAO F L, WEN L, ZHANG S G, et al. Effect of InxGa1-xAs interlayer on the properties of In0.3Ga0.7As epitaxial films grown on Si (111) substrates by molecular beam epitaxy[J]. Thin Solid Films, 2015, 597: 25-29. [28] CHANG M L, LI J Y, YUAN Z Y, et al. Low loss single crystalline aluminum films obtained on Si (111) through interfacial modulation[J]. Journal of Crystal Growth, 2022, 588: 126678. [29] 陈可明,张翔九,王 迅.反射式高能电子衍射图样分析[J].真空科学与技术,1987,7(6):366-372. CHEN K M, ZHANG X J, WANG X. Analysis of reflected high energy electron diffraction pattens[J]. Vacuum Science and Technology, 1987, 7(6): 366-372(in Chinese). [30] HAYAFUJI N, KIZUKI H, MIYASHITA M, et al. Crack propagation and mechanical fracture in GaAs-on-Si[J]. Japanese Journal of Applied Physics, 1991, 30(Part 1, No. 3): 459-463. |