[1] DIMESSO L, SPANHEIMER C, JAEGERMANN W, et al. LiFePO4-3D carbon nanofiber composites as cathode materials for Li-ions batteries[J]. Journal of Applied Physics, 2012, 111(6): 064307. [2] ELLIS B L, LEE K T, NAZAR L F. Positive electrode materials for Li-ion and Li-batteries[J]. Chemistry of Materials, 2010, 22(3): 691-714. [3] LEE J, ZHOU W, IDROBO J C, et al. Vacancy-driven anisotropic defect distribution in the battery-cathode material LiFePO4[J]. Physical Review Letters, 2011, 107(8): 085507. [4] PROSINI P P, LISI M, ZANE D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4[J]. Solid State Ionics, 2002, 148(1/2): 45-51. [5] BARKER J, SAIDI M Y, SWOYER J L. Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method[J]. Electrochemical and Solid-State Letters, 2003, 6(3): A53. [6] DELMAS C, MACCARIO M, CROGUENNEC L, et al. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model[J]. Nature Materials, 2008, 7(8): 665-671. [7] WANG M, ZHANG W, LIU Y H, et al. Electrochemical performance of patterned LiFePO4 nano-electrode with a pristine amorphous layer[J]. Applied Physics Letters, 2014, 104(17): 171604. [8] LEE J, PENNYCOOK S J, PANTELIDES S T. Simultaneous enhancement of electronic and Li+ ion conductivity in LiFePO4[J]. Applied Physics Letters, 2012, 101(3): 033901. [9] BILECKA I, HINTENNACH A, ROSSELL M D, et al. Microwave-assisted solution synthesis of doped LiFePO4 with high specific charge and outstanding cycling performance[J]. Journal of Materials Chemistry, 2011, 21(16): 5881. [10] SHI S Q, LIU L J, OUYANG C Y, et al. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations[J]. Physical Review B, 2003, 68(19): 195108. [11] 李学良,肖正辉,陈洁洁.铌在铁位掺杂对LiFePO4电子结构和性能的影响[J].硅酸盐学报,2011,39(7):1080-1083. LI X L, XIAO Z H, CHEN J J. Effect of Nb-doping at Fe-site on the electronic structure and property of LiFePO4[J]. Journal of the Chinese Ceramic Society, 2011, 39(7): 1080-1083(in Chinese). [12] LIN H, WEN Y W, ZHANG C X, et al. A GGA+U study of lithium diffusion in vanadium doped LiFePO4[J]. Solid State Communications, 2012, 152(12): 999-1003. [13] 张冬云,张培新,宋申华,等.镍镁掺杂LiFePO4的电子结构[J].中国有色金属学报,2012,22(8):2317-2325. ZHANG D Y, ZHANG P X, SONG S H, et al. Electronic structure of LiFePO4 doped with Ni and Mg[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(8): 2317-2325(in Chinese). [14] ZHANG H, TANG Y H, SHEN J Q, et al. Antisite defects and Mg doping in LiFePO4: a first-principles investigation[J]. Applied Physics A, 2011, 104(2): 529-537. [15] WANG Z L, SUN S R, XIA D G, et al. Investigation of electronic conductivity and occupancy sites of Mo doped into LiFePO4 by ab initio calculation and X-ray absorption spectroscopy[J]. The Journal of Physical Chemistry C, 2008, 112(44): 17450-17455. [16] HOU L X, TAO G H. A first-principles study of bulk and surface Sn-doped LiFePO4: the role of intermediate valence component in the multivalent doping[J]. Physica Status Solidi (b), 2017, 254(10): 1700041. [17] GU N Y, LI Y, LI C. Effects of Na and V co-doping on electrochemical performance of LiFePO4/C[J]. Advanced Materials Research, 2013, 724/725: 1067-1070. [18] LUO D F, HOU X H, YANG J H, et al. First principles studies on the electronics structures of (Li0.75Na0.25)(Fe0.75Mn0.25)PO4 cathode materials[J]. Rare Metal Materials and Engineering, 2012, 41(8): 1323-1326. [19] CHU-YING O Y, WANG D Y, SHI S Q, et al. First principles study on NaxLi1-x FePO4 as cathode material for rechargeable lithium batteries[J]. Chinese Physics Letters, 2006, 23(1): 61-64. [20] 朱令之,韩恩山,曹吉林.铁位掺杂对LiFePO4-C性能的影响[J].人工晶体学报,2012,41(3):692-697. ZHU L Z, HAN E S, CAO J L. Influence of Fe site doping on the performance of LiFePO4-C cathode material[J]. Journal of Synthetic Crystals, 2012, 41(3): 692-697(in Chinese). [21] 钟淑琳,仇家豪,罗文崴,等.稀土掺杂对LiFePO4性能影响的第一性原理研究[J].物理学报,2021,70(15):307-316. ZHONG S L, QIU J H, LUO W W, et al. First-principles study of properties of rare-earth-doped LiFePO4[J]. Acta Physica Sinica, 2021, 70(15): 307-316(in Chinese). [22] ANDERSSON A S, KALSKA B, HÄGGSTRÖM L, et al. Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mössbauer spectroscopy study[J]. Solid State Ionics, 2000, 130(1/2): 41-52. [23] MAHMOOD T, CAO C B, BUTT F K, et al. Elastic, electronic and optical properties of cotunnite TiO2 from first principles calculations[J]. Physica B: Condensed Matter, 2012, 407(22): 4495-4501. [24] JIANG C, SRINIVASAN S G. Unexpected strain-stiffening in crystalline solids[J]. Nature, 2013, 496(7445): 339-342. [25] WU Z J, HAO X F, LIU X J, et al. Structures and elastic properties of OsN2 investigated via first-principles density functional calculations[J]. Physical Review B, 2007, 75(5): 054115. [26] 汝 强,胡社军,赵灵智.LixFePO4(x=0.0,0.75,1.0)电子结构与弹性性质的第一性原理研究[J].物理学报,2011,60(3):454-463. RU Q, HU S J, ZHAO L Z. First-principles study of the electronic structure and elastic property of LixFePO4[J]. Acta Physica Sinica, 2011, 60(3): 454-463(in Chinese). [27] HILL R. The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349-354. [28] CARAVACA M A, MIÑO J C, PÉREZ V J, et al. Ab initiostudy of the elastic properties of single and polycrystal TiO2, ZrO2and HfO2in the cotunnite structure[J]. Journal of Physics: Condensed Matter, 2009, 21(1): 015501. [29] HAINES J, LÉGER J M, BOCQUILLON G. Synthesis and design of superhard materials[J]. Annual Review of Materials Research, 2001, 31: 1-23. [30] 阮林伟,朱玉俊,裘灵光,等.碳掺杂α-S8的光学性质和弹性性质的第一性原理计算[J].物理化学学报,2014,30(5):845-854. RUAN L W, ZHU Y J, QIU L G, et al. First-principles calculations of optical and elastic properties of carbon-doped α-S8[J]. Acta Physico-Chimica Sinica, 2014, 30(5): 845-854(in Chinese). [31] RANGANATHAN S I, OSTOJA-STARZEWSKI M. Mesoscale conductivity and scaling function in aggregates of cubic, trigonal, hexagonal, and tetragonal crystals[J]. Physical Review B, 2008, 77(21): 214308. [32] RAVINDRAN P, FAST L, KORZHAVYI P A, et al. Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2[J]. Journal of Applied Physics, 1998, 84(9): 4891-4904. |