[1] LI G, ZHU R, YANG Y. Polymer solar cells[J]. Nature Photonics, 2012, 6(3): 153-161. [2] O′ROURKE F, BOYLE F, REYNOLDS A. Tidal energy update 2009[J]. Applied Energy, 2010, 87(2): 398-409. [3] ZARFL C, LUMSDON A E, BERLEKAMP J, et al. A global boom in hydropower dam construction[J]. Aquatic Sciences, 2015, 77(1): 161-170. [4] DÍAZ-GONZÁLEZ F, SUMPER A, GOMIS-BELLMUNT O, et al. A review of energy storage technologies for wind power applications[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2154-2171. [5] BIE K, FU P F, LIU Y, et al. Comparative study on the performance of different carbon fuels in a molten carbonate direct carbon fuel cell with a novel anode structure[J]. Journal of Power Sources, 2020, 460: 228101. [6] XIE H P, ZHAI S, CHEN B, et al. Coal pretreatment and Ag-infiltrated anode for high-performance hybrid direct coal fuel cell[J]. Applied Energy, 2020, 260: 114197. [7] LI X, ZHU Z H, CHEN J L, et al. Surface modification of carbon fuels for direct carbon fuel cells[J]. Journal of Power Sources, 2009, 186(1): 1-9. [8] CAI W Z, LIU J, LIU P P, et al. A direct carbon solid oxide fuel cell fueled with char from wheat straw[J]. International Journal of Energy Research, 2019, 43(7): 2468-2477. [9] XIE Y M, LU Z B, MA C C, et al. High-performance gas-electricity cogeneration using a direct carbon solid oxide fuel cell fueled by biochar derived from camellia oleifera shells[J]. International Journal of Hydrogen Energy, 2020, 45(53): 29322-29330. [10] JIANG C R, CUI C, MA J J, et al. Insight into graphite oxidation in a NiO-based hybrid direct carbon fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(17): 10559-10568. [11] JIANG C R, MA J J, BONACCORSO A D, et al. Demonstration of high power, direct conversion of waste-derived carbon in a hybrid direct carbon fuel cell[J]. Energy & Environmental Science, 2012, 5(5): 6973. [12] CAI W Z, LIU J, XIE Y M, et al. An investigation on the kinetics of direct carbon solid oxide fuel cells[J]. Journal of Solid State Electrochemistry, 2016, 20(8): 2207-2216. [13] RADY A C, GIDDEY S, KULKARNI A, et al. Direct carbon fuel cell operation on brown coal[J]. Applied Energy, 2014, 120: 56-64. [14] LIU J, ZHOU M Y, ZHANG Y P, et al. Electrochemical oxidation of carbon at high temperature: principles and applications[J]. Energy & Fuels, 2018, 32(4): 4107-4117. [15] PALNIANDY L K, YOON L W, WONG W Y, et al. Application of biochar derived from different types of biomass and treatment methods as a fuel source for direct carbon fuel cells[J]. Energies, 2019, 12(13): 2477. [16] YU F Y, HAN T T, WANG Z G, et al. Recent progress in direct carbon solid oxide fuel cell: advanced anode catalysts, diversified carbon fuels, and heat management[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4283-4300. [17] ZECEVIC S, PATTON E M, PARHAMI P. Carbon-air fuel cell without a reforming process[J]. Carbon, 2004, 42(10): 1983-1993. [18] CHEREPY N J, KRUEGER R, FIET K J, et al. Direct conversion of carbon fuels in a molten carbonate fuel cell[J]. Journal of the Electrochemical Society, 2005, 152(1): A80. [19] CHEN M M, WANG C Y, NIU X M, et al. Carbon anode in direct carbon fuel cell[J]. International Journal of Hydrogen Energy, 2010, 35(7): 2732-2736. [20] WU H, XIAO J, ZENG X Y, et al. A high performance direct carbon solid oxide fuel cell: a green pathway for brown coal utilization[J]. Applied Energy, 2019, 248: 679-687. [21] EOM S, CHO J, AHN S, et al. Comparison of the electrochemical reaction parameter of graphite and sub-bituminous coal in a direct carbon fuel cell[J]. Energy & Fuels, 2016, 30(4): 3502-3508. [22] LI S B, PAN W Z, WANG S R, et al. Electrochemical performance of different carbon fuels on a hybrid direct carbon fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(25): 16279-16287. [23] SCHMIDT M W I, NOACK A G. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges[J]. Global Biogeochemical Cycles, 2000, 14(3): 777-793. [24] RAZDYAKONOVA G I, LIKHOLOBOV V A, KOKHANOVSKAYA O A. Khimiya v interesakh ustoichivogo razvitiya, 2016, 24(4): 473-82. [25] LIU R Z, ZHAO C H, LI J L, et al. A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells[J]. Journal of Power Sources, 2010, 195(2): 480-482. [26] LI C, SHI Y X, CAI N S. Performance improvement of direct carbon fuel cell by introducing catalytic gasification process[J]. Journal of Power Sources, 2010, 195(15): 4660-4666. [27] JAIN S L, BARRY LAKEMAN J, POINTON K D, et al. Electrochemical performance of a hybrid direct carbon fuel cell powered by pyrolysed MDF[J]. Energy & Environmental Science, 2009, 2(6): 687. [28] GAN Q, ALLEN S J, MATTHEWS R. Activation of waste MDF sawdust charcoal and its reactive dye adsorption characteristics[J]. Waste Management, 2004, 24(8): 841-848. [29] QIU Q Y, ZHOU M Y, CAI W Z, et al. A comparative investigation on direct carbon solid oxide fuel cells operated with fuels of biochar derived from wheat straw, corncob, and bagasse[J]. Biomass and Bioenergy, 2019, 121: 56-63. [30] 刘跃岭,景 琦,徐 帆,等.直接利用生物质的化学燃料电池研究进展[J].化工进展,2018,37(9):3346-3354. LIU Y L, JING Q, XU F, et al. Research progress of chemical fuel cells by direct use of biomass[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3346-3354(in Chinese). [31] JAFRI N, WONG W Y, YOON L W, et al. Pretreated mesocarp fibre biochars as carbon fuel for direct carbon fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(31): 16762-16775. [32] LIU G Y, ZHANG Y T, ZHOU A N, et al. A comparative study on the performance of direct carbon solid oxide fuel cells powered with different rank coals[J]. Energy & Fuels, 2021, 35(8): 6835-6844. [33] GONZALEZ-SALAZAR M A, KIRSTEN T, PRCHLIK L. Review of the operational flexibility and emissions of gas- and coal-fired power plants in a future with growing renewables[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1497-1513. [34] JIAO Y, XUE X T, AN W T, et al. Purified high-sulfur coal as a fuel for direct carbon solid oxide fuel cells[J]. International Journal of Energy Research, 2019, 43(7): 2501-2513. [35] CAO T, HUANG K, SHI Y X, et al. Recent advances in high-temperature carbon-air fuel cells[J]. Energy & Environmental Science, 2017, 10(2): 460-490. [36] TANG Y B, LIU J. Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35(20): 11188-11193. [37] LIU G Y, ZHOU A N, QIU J S, et al. Utilization of bituminous coal in a direct carbon fuel cell[J]. International Journal of Hydrogen Energy, 2016, 41(20): 8576-8582. [38] LI X, ZHU Z H, DE MARCO R, et al. Evaluation of raw coals as fuels for direct carbon fuel cells[J]. Journal of Power Sources, 2010, 195(13): 4051-4058. [39] XU K, DONG J Z, HU H Y, et al. Effect of ash components on the performance of solid oxide electrolyte-based carbon fuel cells[J]. Energy & Fuels, 2018, 32(4): 4538-4546. [40] YAN J C, BAI Z Q, HAO P, et al. Comparative study of low-temperature pyrolysis and solvent treatment on upgrading and hydro-liquefaction of brown coal[J]. Fuel, 2017, 199: 598-605. [41] 崔 帅,唐晓宁,张 彬,等.云南褐煤成型工艺条件的研究与优化[J].硅酸盐通报,2015,34(7):1744-1749. CUI S, TANG X N, ZHANG B, et al. Experimental study and optimization for the molding process condition of lignite in Yunnan[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(7): 1744-1749(in Chinese). [42] 张跃东.活性炭吸附法在工业废水处理中的应用[J].河北化工,2011,34(6):74-76. ZHANG Y D. Application of active carbon adsorption methoel in treating industrial wastewater[J]. Hebei Chemical Industry, 2011, 34(6): 74-76(in Chinese). [43] 王 程,曹 强,汤海涌.活性炭的应用研究进展[J].化学与生物工程,2019,36(1):11-14. WANG C, CAO Q, TANG H Y. Research progress in application of activated carbon[J]. Chemistry & Bioengineering, 2019, 36(1): 11-14(in Chinese). [44] XIE Y M, TANG Y B, LIU J. A verification of the reaction mechanism of direct carbon solid oxide fuel cells[J]. Journal of Solid State Electrochemistry, 2013, 17(1): 121-127. [45] JIAO Y, TIAN W J, CHEN H L, et al. In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance[J]. Applied Energy, 2015, 141: 200-208. [46] YU X K, SHI Y X, WANG H J, et al. Using potassium catalytic gasification to improve the performance of solid oxide direct carbon fuel cells: experimental characterization and elementary reaction modeling[J]. Journal of Power Sources, 2014, 252: 130-137. [47] CAI W Z, LIU J, YU F Y, et al. A high performance direct carbon solid oxide fuel cell fueled by Ca-loaded activated carbon[J]. International Journal of Hydrogen Energy, 2017, 42(33): 21167-21176. [48] TANG H Q, YU F Y, WANG Y S, et al. Enhancing the power output of direct carbon solid oxide fuel cell using Ba-loaded activated carbon fuel[J]. Energy Technology, 2019, 7(4): 1800885. |