人工晶体学报 ›› 2022, Vol. 51 ›› Issue (3): 523-537.
李志伟, 唐慧丽, 徐军, 刘波
收稿日期:
2021-11-10
出版日期:
2022-03-15
发布日期:
2022-04-11
通讯作者:
刘波,博士,教授。E-mail:lbo@tongji.edu.cn
作者简介:
李志伟(1997—),男,山东省人,硕士研究生。E-mail:1930966@tongji.edu.cn
基金资助:
LI Zhiwei, TANG Huili, XU Jun, LIU Bo
Received:
2021-11-10
Online:
2022-03-15
Published:
2022-04-11
摘要: X射线具有波长短、穿透能力强等优点,在医学成像、安全检查、科学研究、空间通信等领域具有重要作用。半导体X射线探测器可以将X射线转换为电流信号,具有易集成、空间分辨率高、能量分辨率高、响应速度快等优点。高性能的X射线探测器应具备暗电流低、灵敏度高、响应速度快、可长时间稳定工作等特点,因此制备X射线探测器的半导体材料应具有电阻率高、缺陷少、抗辐照能力强、禁带宽度宽等性质。氧化镓(Ga2O3)是一种新型宽禁带半导体材料,具有超宽禁带宽度、高击穿场强、高X射线吸收系数、耐高温、可采用熔体法生长大尺寸单晶等优点,是一种适合制备X射线探测器的新型材料,近年来基于Ga2O3的X射探测器成为辐射探测领域的研究热点之一。本文主要介绍了Ga2O3半导体的物理性质及其在X射线探测器方面的研究进展,分析了影响X射线探测器性能的物理机制,为提高Ga2O3基X射探测器的性能提供了思路。
中图分类号:
李志伟, 唐慧丽, 徐军, 刘波. 超宽禁带半导体氧化镓基X射线探测器的研究进展[J]. 人工晶体学报, 2022, 51(3): 523-537.
LI Zhiwei, TANG Huili, XU Jun, LIU Bo. Research Progress of Ultra-Wide Band Gap Semiconductor Ga2O3-Based X-Ray Detectors[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(3): 523-537.
[1] ROWLANDS J A. Material change for X-ray detectors[J]. Nature, 2017, 550(7674): 47-48. [2] WEI H T, FANG Y J, MULLIGAN P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals[J]. Nature Photonics, 2016, 10(5): 333-339. [3] PAN W C, YANG B, NIU G D, et al. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection[J]. Advanced Materials, 2019, 31(44): 1904405. [4] SPAHN M. X-ray detectors in medical imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 731: 57-63. [5] SHIKHALIEV P M. Tilted angle CZT detector for photon counting/energy weighting X-ray and CT imaging[J]. Physics in Medicine and Biology, 2006, 51(17): 4267-4287. [6] PAN W C, WU H D, LUO J J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit[J]. Nature Photonics, 2017, 11(11): 726-732. [7] HOHEISEL M, ARQUES M, CHABBAL J, et al. Amorphous silicon X-ray detectors[J]. Journal of Non-Crystalline Solids, 1998, 227/228/229/230: 1300-1305. [8] NEGRE J P, RUBBELYNCK C. Application of fast CVD diamond photoconductor detectors to MeV X-ray metrology for the AIRIX flash radiographic facility[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 451(3): 638-650. [9] LI Q, BEILICKE M, LEE K E, et al. Study of thick CZT detectors for X-ray and Gamma-ray astronomy[J]. Astroparticle Physics, 2011, 34(10): 769-777. [10] KASAP S O. X-ray sensitivity of photoconductors: application to stabilized a-Se[J]. Journal of Physics D: Applied Physics, 2000, 33(21): 2853-2865. [11] LEE S C, JEON H B, KANG K H, et al. Study of silicon photodiode performance for X-ray detector in cargo system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 912: 350-353. [12] KONG W Y, WU G A, WANG K Y, et al. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application[J]. Advanced Materials, 2016, 28(48): 10725-10731. [13] DYNDAL K, ZARZYCKI A, ANDRYSIEWICZ W, et al. CuO-Ga2O3 thin films as a gas-sensitive material for acetone detection[J]. Sensors (Basel, Switzerland), 2020, 20(11): 3142. [14] OGITA M, HIGO K, NAKANISHI Y, et al. Ga2O3 thin film for oxygen sensor at high temperature[J]. Applied Surface Science, 2001, 175/176: 721-725. [15] GAO X, XIA Y D, JI J F, et al. Effect of top electrode materials on bipolar resistive switching behavior of gallium oxide films[J]. Applied Physics Letters, 2010, 97(19): 193501. [16] MYKHAYLYK V B, KRAUS H, KAPUSTIANYK V, et al. Low temperature scintillation properties of Ga2O3[J]. Applied Physics Letters, 2019, 115(8): 081103. [17] 何诺天,唐慧丽,刘波,等. Ge掺杂β-Ga2O3晶体的发光性能研究(英文)[J]. 人工晶体学报, 2020, 49(8): 1534-1540. HE N T, TANG H L, LIU B, et al. Study on the luminescence properties of Ge-doped β-Ga2O3 crystals[J]. Journal of Synthetic Crystals, 2020, 49(8): 1534-1540+1561. [18] XU Q, WANG X, ZHANG H, et al. CsPbBr3 single crystal X-ray detector with Schottky barrier for X-ray imaging application[J]. ACS Applied Electronic Materials, 2020, 2(4): 879-884. [19] TIE S J, ZHAO W, XIN D Y, et al. Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(31): e2001981. [20] WEI W, ZHANG Y, XU Q, et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging[J]. Nature Photonics, 2017, 11(5): 315-321. [21] KIM Y C, KIM K H, SON D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging[J]. Nature, 2017, 550(7674): 87-91. [22] PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. [23] CHEN J W, TANG H L, LIU B, et al. High-performance X-ray detector based on single-crystal β-Ga2O3:Mg[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2879-2886. [24] DEVANATHAN R, CORRALES L R, GAO F, et al. Signal variance in gamma-ray detectors: a review[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 565(2): 637-649. [25] ZHANG Y X, LIU Y C, XU Z, et al. Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection[J]. Nature Communications, 2020, 11: 2304. [26] LIU J Y, SHABBIR B, WANG C J, et al. Perovskite X-ray detectors: flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots[J]. Advanced Materials, 2019, 31(30): 1970214. [27] GUO J, XU Y D, YANG W H, et al. High-stability flexible X-ray detectors based on lead-free halide perovskite Cs2TeI6 films[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 23928-23935. [28] LI J C, DU X Y, NIU G D, et al. Rubidium doping to enhance carrier transport in CsPbBr3 single crystals for high-performance X-ray detection[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 989-996. [29] LI L Q, LIU X, ZHANG H J, et al. Enhanced X-ray sensitivity of MAPbBr3 detector by tailoring the interface-states density[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7522-7528. [30] XU Q, SHAO W Y, LI Y, et al. High-performance surface barrier X-ray detector based on methylammonium lead tribromide single crystals[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 9679-9684. [31] LI Y, LIU J Y, SU X, et al. High performance broadband photo and soft X-ray detectors based on two dimensional CrSiTe3[J]. Journal of Materials Chemistry C, 2020, 8(20): 6659-6666. [32] YAO L, NIU G D, YIN L X, et al. Bismuth halide perovskite derivatives for direct X-ray detection[J]. Journal of Materials Chemistry C, 2020, 8(4): 1239-1243. [33] ZHANG H J, WANG F B, LU Y F, et al. High-sensitivity X-ray detectors based on solution-grown caesium lead bromide single crystals[J]. Journal of Materials Chemistry C, 2020, 8(4): 1248-1256. [34] ZHANG B B, LIU X, XIAO B, et al. High-performance X-ray detection based on one-dimensional inorganic halide perovskite CsPbI3[J]. The Journal of Physical Chemistry Letters, 2020, 11(2): 432-437. [35] LI Z, CHANG S Q, ZHANG H Q, et al. Flexible lead-free X-ray detector from metal-organic frameworks[J]. Nano Letters, 2021, 21(16): 6983-6989. [36] TANG H L, HE N T, ZHANG H, et al. Inhibition of volatilization and polycrystalline cracking, and the optical properties of β-Ga2O3 grown by the EFG method[J]. Cryst Eng Comm, 2020, 22(5): 924-931. [37] VON WENCKSTERN H. Group-Ⅲ sesquioxides: growth, physical properties and devices[J]. Advanced Electronic Materials, 2017, 3(9): 1600350. [38] YOSHIOKA S, HAYASHI H, KUWABARA A, et al. Structures and energetics of Ga2O3 polymorphs[J]. Journal of Physics: Condensed Matter, 2007, 19(34): 346211. [39] HE H Y, ORLANDO R, BLANCO M A, et al. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases[J]. Physical Review B, 2006, 74(19): 195123. [40] KROLL P, DRONSKOWSKI R, MARTIN M. Formation of spinel-type gallium oxynitrides: a density-functional study of binary and ternary phases in the system Ga-O-N[J]. Journal of Materials Chemistry, 2005, 15(32): 3296. [41] PLAYFORD H Y, HANNON A C, BARNEY E R, et al. Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction[J]. Chemistry-A European Journal, 2013, 19(8): 2803-2813. [42] ROY R, HILL V G, OSBORN E F. Polymorphism of Ga2O3 and the system Ga2O3-H2O[J]. Journal of the American Chemical Society, 1952, 74(3): 719-722. [43] HE H Y, BLANCO M A, PANDEY R. Electronic and thermodynamic properties of β-Ga2O3[J]. Applied Physics Letters, 2006, 88(26): 261904. [44] LITIMEIN F, RACHED D, KHENATA R, et al. FPLAPW study of the structural, electronic, and optical properties of Ga2O3: monoclinic and hexagonal phases[J]. Journal of Alloys and Compounds, 2009, 488(1): 148-156. [45] PEELAERS H, VAN DE WALLE C G. Brillouin zone and band structure of β-Ga2O3[J]. Physica Status Solidi (b), 2015, 252(4): 828-832. [46] VARLEY J B, WEBER J R, JANOTTI A, et al. Oxygen vacancies and donor impurities in β-Ga2O3[J]. Applied Physics Letters, 2010, 97(14): 142106. [47] WANG V, XIAO W, KANG L J, et al. Sources ofn-type conductivity in GaInO3[J]. Journal of Physics D: Applied Physics, 2015, 48(1): 015101. [48] ZHANG H, TANG H L, HE N T, et al. Growth and physical characterization of high resistivity Fe:β-Ga2O3 crystals[J]. Chinese Physics B, 2020, 29(8): 087201. [49] WONG M H, LIN C H, KURAMATA A, et al. Acceptor doping of β-Ga2O3 by Mg and N ion implantations[J]. Applied Physics Letters, 2018, 113(10): 102103. [50] GUO D Y, AN Y H, CUI W, et al. Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1-xFex)2O3 multilayer thin films[J]. Scientific Reports, 2016, 6: 25166. [51] SAIKUMAR A K, NEHATE S D, SUNDARAM K B. Review: RF sputtered films of Ga2O3[J]. ECS Journal of Solid State Science and Technology, 2019, 8(7): Q3064-Q3078. [52] KNEI M, HASSA A, SPLITH D, et al. Tin-assisted heteroepitaxial PLD-growth of κ-Ga2O3 thin films with high crystalline quality[J]. APL Materials, 2018, 7(2): 022516. [53] ALEMA F, HERTOG B, OSINSKY A, et al. Fast growth rate of epitaxial β-Ga2O3 by close coupled showerhead MOCVD[J]. Journal of Crystal Growth, 2017, 475: 77-82. [54] TANG H L, HE N T, ZHU Z C, et al. Temperature-dependence of X-ray excited luminescence of β-Ga2O3 single crystals[J]. Applied Physics Letters, 2019, 115(7): 071904. [55] ZHOU L D, LU X, CHEN L, et al. Leakage current by poole-Frenkel emission in Pt Schottky contacts on 201 β-Ga2O3 grown by edge-defined film-fed growth[J]. ECS Journal of Solid State Science and Technology, 2019, 8(7): Q3054-Q3057. [56] HE N T, XU M X, TANG H L, et al. Scintillation properties of β-Ga2O3 single crystal excited by α-ray[J]. IEEE Transactions on Nuclear Science, 2020, 67(1): 400-404. [57] HE N T, TANG H L, LIU B, et al. Ultra-fast scintillation properties of β-Ga2O3 single crystals grown by floating zone method[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 888: 9-12. [58] BALDINI M, GALAZKA Z, WAGNER G. Recent progress in the growth of β-Ga2O3 for power electronics applications[J]. Materials Science in Semiconductor Processing, 2018, 78: 132-146. [59] IRMSCHER K, GALAZKA Z, PIETSCH M, et al. Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method[J]. Journal of Applied Physics, 2011, 110(6): 063720. [60] HOSHIKAWA K, OHBA E, KOBAYASHI T, et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air[J]. Journal of Crystal Growth, 2016, 447: 36-41. [61] 吴庆辉,唐慧丽,苏良碧,等.光学浮区法生长掺锗氧化镓单晶及其性质研究[J].人工晶体学报,2016,45(6):1440-1444. WU Q H, TANG H L, SU L B, et al. Study on growth and properties of Ge:β-Ga2O3 single crystal by optical floating zone method[J]. Journal of Synthetic Crystals, 2016, 45(6): 1440-1444(in Chinese). [62] 李 源,石爱红,孙彩华,等.SiC晶体生长中气相组分输运特性[J].人工晶体学报,2018,47(11):2260-2264. LI Y, SHI A H, SUN C H, et al. Vapor species transport characteristics in SiC crystal growth[J]. Journal of Synthetic Crystals, 2018, 47(11): 2260-2264(in Chinese). [63] 王新月,张胜男,霍晓青,等.超宽禁带半导体β-Ga2O3相关研究进展[J].人工晶体学报,2021,50(11):1995-2012. WANG X Y, ZHANG S N, HUO X Q, et al. Research progress of ultra-wide bandgap semiconductor β-Ga2O3[J]. Journal of Synthetic Crystals, 2021, 50(11): 1995-2012(in Chinese). [64] 唐慧丽,刘 波,徐 军,等.超宽禁带半导体闪烁晶体氧化镓的研究进展[J].现代应用物理,2021,12(2):3-12. TANG H L, LIU B, XU J, et al. Research progress of ultrawide-bandgap semiconductor scintillator β-Ga2O3[J]. Modern Applied Physics, 2021, 12(2): 3-12(in Chinese). [65] 唐慧丽,何诺天,罗 平,等.超宽禁带半导体β-Ga2O3单晶生长突破2英寸[J].人工晶体学报,2017,46(12):2533-2534. TANG H L, HE N T, LUO P, et al. Ultra-wide bandgap semiconductor β-Ga2O3 single crystal growth breaks through 2 inches[J]. Journal of Synthetic Crystals, 2017, 46(12): 2533-2534(in Chinese). [66] NEAL A T, MOU S, RAFIQUE S, et al. Donors and deep acceptors in β-Ga2O3[J]. Applied Physics Letters, 2018, 113(6): 062101. [67] ZHANG Z, FARZANA E, AREHART A R, et al. Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy[J]. Applied Physics Letters, 2016, 108(5): 052105. [68] POLYAKOV A Y, SMIRNOV N B, SHCHEMEROV I V, et al. Electrical properties of bulk semi-insulating β-Ga2O3 (Fe)[J]. Applied Physics Letters, 2018, 113(14): 142102. [69] LU X, ZHOU L D, CHEN L, et al. Schottky X-ray detectors based on a bulk β-Ga2O3 substrate[J]. Applied Physics Letters, 2018, 112(10): 103502. [70] HANY I, YANG G, CHUNG C C. Fast X-ray detectors based on bulk β-Ga2O3 (Fe)[J]. Journal of Materials Science, 2020, 55(22): 9461-9469. [71] CHEN J W, TANG H L, LI Z W, et al. Highly sensitive X-ray detector based on a β-Ga2O3:Fe single crystal[J]. Optics Express, 2021, 29(15): 23292-23299. [72] ZHOU L D, CHEN L, RUAN J L, et al. Pulsed X-ray detector based on Fe doped β-Ga2O3 single crystal[J]. Journal of Physics D: Applied Physics, 2021, 54(27): 274001. [73] LI Z W, CHEN J W, TANG H L, et al. Band gap engineering in β-Ga2O3 for a high-performance X-ray detector[J]. ACS Applied Electronic Materials, 2021, 3(10): 4630-4639. [74] LIANG H L, CUI S J, SU R, et al. Flexible X-ray detectors based on amorphous Ga2O3 thin films[J]. ACS Photonics, 2019, 6(2): 351-359. [75] CHEN M N, ZHANG Z P, ZHAN R Z, et al. Fast-response X-ray detector based on nanocrystalline Ga2O3 thin film prepared at room temperature[J]. Applied Surface Science, 2021, 554: 149619. [76] ZHOU L D, LU X, WU J, et al. Self-powered fast-response X-ray detectors based on vertical GaN p-n diodes[J]. IEEE Electron Device Letters, 2019, 40(7): 1044-1047. |
[1] | 刘发付, 张丛, 郭建斌, 张武, 曹剑武, 张海波, 徐明霞. 原位ATR-IR光谱实时研究DKDP的结晶过程[J]. 人工晶体学报, 2022, 51(3): 404-410. |
[2] | 王涛, 贾志泰, 李阳, 张健, 陶绪堂. 激光加热基座技术生长超细单晶光纤研究[J]. 人工晶体学报, 2022, 51(3): 428-433. |
[3] | 李佳樨, 熊正斌, 肖骁, 刘心尧, 余孟秋, 陈宝军, 黄巍, 何知宇. 砷锗镉晶体的生长和变温霍尔效应研究[J]. 人工晶体学报, 2022, 51(2): 193-199. |
[4] | 林光伟, 王珊, 张西亚, 彭鑫, 高俊伟, 高德东. 基于贝叶斯参数优化的无模型自适应硅单晶直径控制[J]. 人工晶体学报, 2022, 51(2): 229-241. |
[5] | 史少辉, 方震宇, 汪宏. 溶剂蒸汽退火辅助微距升华法制备C8-BTBT单晶[J]. 人工晶体学报, 2022, 51(1): 42-48. |
[6] | 魏丽静, 孟子杰, 郭建新. TFSI钝化晶体硅表面性质的第一性原理研究[J]. 人工晶体学报, 2022, 51(1): 72-76. |
[7] | 李强, 张培芝, 吕锦彬, 章庆勇, 刘莉, 叶洋. (111)取向0.7PMN-0.3PT薄膜机电耦合性能[J]. 人工晶体学报, 2022, 51(1): 112-119. |
[8] | 岳文锋, 俞亮, 郭全胜, 贾婷婷, 于淑会. 多铁性材料的应变调控[J]. 人工晶体学报, 2022, 51(1): 154-169. |
[9] | 王涛, 贾志泰, 李阳, 张健, 陶绪堂. 单晶光纤制备及高温传感器研究进展[J]. 人工晶体学报, 2021, 50(9): 1603-1624. |
[10] | 肖靖, 常双聚, 赵莉, 朱亚彬, 陈云琳. 高掺锌/镁铌酸锂薄膜的光电性质[J]. 人工晶体学报, 2021, 50(9): 1648-1654. |
[11] | 高腾, 邢锟, 吴功辉, 陈新, 胡晓琳, 庄乃锋. Bi26-x-yMxNyO40(M, N=Fe, Co, Gd)软铋矿薄膜的制备和强磁光效应[J]. 人工晶体学报, 2021, 50(9): 1655-1661. |
[12] | 胡继超, 孟佳琦, 李丹, 贺小敏, 王曦, 许蓓, 蒲红斌. 低温热处理温度对SiC衬底上CuAlO2薄膜特性的影响[J]. 人工晶体学报, 2021, 50(9): 1662-1667. |
[13] | 罗健, 张小伟, 代波. 反应磁控溅射氧化镍薄膜的自旋塞贝克效应[J]. 人工晶体学报, 2021, 50(9): 1668-1674. |
[14] | 廖杨芳, 谢泉. 溅射功率和溅射时间对Mg2Si纳米晶薄膜结构和电阻率的影响[J]. 人工晶体学报, 2021, 50(9): 1675-1680. |
[15] | 陈星辉, 唐颖慧, 王加强, 柴晗阳, 魏新琪, 陈光伟. 衬底温度对氧化锌薄膜微结构及光学性能的影响[J]. 人工晶体学报, 2021, 50(9): 1681-1687. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||