人工晶体学报 ›› 2022, Vol. 51 ›› Issue (3): 538-550.
潘宝俊1, 张礼杰2, 王佩剑1
收稿日期:
2021-12-07
出版日期:
2022-03-15
发布日期:
2022-04-11
通信作者:
张礼杰,博士,研究员。E-mail:ljzhang@wzu.edu.cn;王佩剑,博士,研究员。E-mail:pjwang@zju.edu.cn
作者简介:
潘宝俊(1992—),男,广东省人,硕士研究生。E-mail:baojunpan1012@126.com
基金资助:
PAN Baojun1, ZHANG Lijie2, WANG Peijian1
Received:
2021-12-07
Online:
2022-03-15
Published:
2022-04-11
摘要: 二维金属碘化物,呈现范德瓦耳斯层状堆垛结构,平均原子序数大,具有合适的能带间隙、强的磁电耦合效应,是一种新型的光电探测材料,能被用于制备高能射线探测器,且一些磁性二维金属碘化物能被用于磁电器件。由于其在光电磁器件方面的潜在应用,近期成为了低维材料研究的热点。并且在材料制备方面,层状金属碘化物一般熔点较低,制备条件温和简单,可用于二维层状材料生长机理的研究。本文首先介绍了层状金属碘化物的结构、性质,然后着重阐述了二维层状金属碘化物的制备方法,最后讨论了层状金属碘化物在光电磁器件方面的应用。期望读者对二维层状金属碘化物有更深入的了解,更好地推动二维层状金属碘化物的应用。
中图分类号:
潘宝俊, 张礼杰, 王佩剑. 二维层状金属碘化物的制备及光电磁器件的应用进展[J]. 人工晶体学报, 2022, 51(3): 538-550.
PAN Baojun, ZHANG Lijie, WANG Peijian. Progress in the Preparation and Opto-Electro-Magneto Application of Two-Dimensional Layered Metal Iodides[J]. Journal of Synthetic Crystals, 2022, 51(3): 538-550.
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. [2] VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science, 2021, 372(6547): eabf1581. [3] SELHORST R C, PUODZIUKYNAITE E, DEWEY J A, et al. Tetrathiafulvalene-containing polymers for simultaneous non-covalent modification and electronic modulation of MoS2 nanomaterials[J]. Chemical Science, 2016, 7(7): 4698-4705. [4] WANG P J, SELHORST R, EMRICK T, et al. Bidirectional electronic tuning of single-layer MoS2 with conjugated organochalcogens[J]. The Journal of Physical Chemistry C, 2019, 123(2): 1506-1511. [5] WANG Q S, LAI J W, SUN D. Review of photo response in semiconductor transition metal dichalcogenides based photosensitive devices[J]. Optical Materials Express, 2016, 6(7): 2313. [6] ROTH S, WILLIG W R. Lead iodide nuclear particle detectors[J]. Applied Physics Letters, 1971, 18(8): 328-330. [7] SCHIEBER M. Fabrication of HgI2 nuclear detectors[J]. Nuclear Instruments and Methods, 1977, 144(3): 469-477. [8] NASON D, KELLER L. The growth and crystallography of bismuth tri-iodide crystals grown by vapor transport[J]. Journal of Crystal Growth, 1995, 156(3): 221-226. [9] WANG Y G, GAN L, CHEN J N, et al. Achieving highly uniform two-dimensional PbI2 flakes for photodetectors via space confined physical vapor deposition[J]. Science Bulletin, 2017, 62(24): 1654-1662. [10] LI J, GUAN X, WANG C, et al. Synthesis of 2D layered BiI3 nanoplates, BiI3/WSe2 van der Waals heterostructures and their electronic, optoelectronic properties[J]. Small, 2017, 13(38):1701034. [11] ZHANG J, HUANG Y, TAN Z, et al. Low-temperature heteroepitaxy of 2D PbI2/graphene for large-area flexible photodetectors[J]. Advanced Materials, 2018: 1803194. [12] PAN B J, ZHANG K N, DING C C, et al. Universal precise growth of 2D transition-metal dichalcogenides in vertical direction[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 35337-35344. [13] TAN M L, HU C, LAN Y, et al. 2D lead dihalides for high-performance ultraviolet photodetectors and their detection mechanism investigation[J]. Small, 2017, 13(47): 1702024. [14] LIU X F, HA S T, ZHANG Q, et al. Whispering gallery mode lasing from hexagonal shaped layered lead iodide crystals[J]. ACS Nano, 2015, 9(1): 687-695. [15] ZHONG M Z, ZHANG S, HUANG L, et al. Large-scale 2D PbI2 monolayers: experimental realization and their indirect band-gap related properties[J]. Nanoscale, 2017, 9(11): 3736-3741. [16] ZHOU Y H, AN H N, GAO C, et al. UV-vis-NIR photodetector based on monolayer MoS2[J]. Materials Letters, 2019, 237: 298-302. [17] XIE Y, ZHANG B, WANG S X, et al. Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717 nm[J]. Advanced Materials, 2017, 29(17): 1605972. [18] ZHONG M Z, HUANG L, DENG H X, et al. Flexible photodetectors based on phase dependent PbI2 single crystals[J]. Journal of Materials Chemistry C, 2016, 4(27): 6492-6499. [19] ZHOU M, DUAN W H, CHEN Y, et al. Single layer lead iodide: computational exploration of structural, electronic and optical properties, strain induced band modulation and the role of spin-orbital-coupling[J]. Nanoscale, 2015, 7(37): 15168-15174. [20] SUNDARAM R S, ENGEL M, LOMBARDO A, et al. Electroluminescence in single layer MoS2[J]. Nano Letters, 2013, 13(4): 1416-1421. [21] JIANG S, SHAN J, MAK K F. Electric-field switching of two-dimensional van der Waals magnets[J]. Nature Materials 2018, 17 (5): 406-410. [22] XU R Z, ZOU X L. Electric field-modulated magnetic phase transition in van der Waals CrI3 bilayers[J]. The Journal of Physical Chemistry Letters, 2020, 11(8): 3152-3158. [23] ZHANG K N, DING C C, PAN B J, et al. Visualizing van der Waals epitaxial growth of 2D heterostructures[J]. Advanced Materials, 2021, 33(45): 2105079. [24] LI Y, CUI K, XU X, et al. Understanding the essential role of PbI2 films in a high-performance lead halide perovskite photodetector[J]. The Journal of Physical Chemistry C, 2020, 124(28): 15107-15114. [25] HE Y L, MA G K, CAI H M, et al. High performance and mechanism of the resistive switching device based on lead halide thin films[J]. Journal of Physics D: Applied Physics, 2019, 52(13): 135103. [26] YANG L H, ZHANG Y, WANG J, et al. Pressure-induced phase transitions of lead iodide[J]. RSC Advances, 2016, 6(88): 84604-84609. [27] SUN H, WEI Q, SU Q F, et al. Purely physical fabrication of 10 cm×10 cm, highly uniform PbI2 thin films on rigid and flexible substrates for X-ray photodetection application[J]. APL Materials, 2020, 8(3): 031108. [28] SUN H, ZHU X H, YANG D Y, et al. Electrical and γ-ray energy spectrum response properties of PbI2 crystal grown by physical vapor transport[J]. Journal of Semiconductors, 2012, 33(5): 053002. [29] ZHU X H, WEI Z R, JIN Y R, et al. Growth and characterization of a PbI2 single crystal used for gamma ray detectors[J]. Crystal Research and Technology, 2007, 42(5): 456-459. [30] CRLL A, TONN J, POST E, et al. Anisotropic and temperature-dependent thermal conductivity of PbI2[J]. Journal of Crystal Growth, 2017, 466: 16-21. [31] PODRAZA N J, QIU W, HINOJOSA B B, et al. Band gap and structure of single crystal BiI3: resolving discrepancies in literature[J]. Journal of Applied Physics, 2013, 114(3): 033110. [32] WANG X M, WU J F, WANG J H, et al. Pressure-induced structural and electronic transitions in bismuth iodide[J]. Physical Review B, 2018, 98(17): 174112. [33] YUAN Q Q, ZHENG F, SHI Z Q, et al. Direct growth of van der waals tin diiodide monolayers[J]. Advanced Science, 2021, 8(20): 2100009. [34] DONI E, GROSSO G, LADIANA I. A layer model for the band structure of SnI2[J]. Physica B+C, 1980, 99(1-4): 281-286. [35] YODER C S, SHENK S, SCHAEFFER R W, et al. The synthesis, characterization, and lewis acidity of SnI2 and SnI4[J]. Journal of Chemical Education, 1997, 74(5): 575. [36] LAI K, LI H X, XU Y K, et al. Achieving a direct band gap and high power conversion efficiency in an SbI3/BiI3 type-Ⅱ vdW heterostructure via interlayer compression and electric field application[J]. Physical Chemistry Chemical Physics: PCCP, 2019, 21(5): 2619-2627. [37] TROTTER J, ZOBEL T. The crystal structure of SbI3 and BiI3[J]. Zeitschrift Für Kristallographie - Crystalline Materials, 1966, 123(1-6): 67-72. [38] MIAH M I. Multiphoton excitation and thermal activation in indirect bandgap semiconductors[J]. Optical and Quantum Electronics, 2018, 50(9): 1-7. [39] YAN Z P, YIN K T, YU Z H, et al. Pressure-induced band-gap closure and metallization in two-dimensional transition metal halide CdI2[J]. Applied Materials Today, 2020, 18: 100532. [40] ZHAO M, YANG S J, ZHANG K N, et al. A universal atomic substitution conversion strategy towards synthesis of large-size ultrathin nonlayered two-dimensional materials[J]. Nano-Micro Letters, 2021, 13(1): 1-13. [41] WEBSTER L, YAN J A. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3[J]. Physical Review B, 2018, 98(14): 144411. [42] BOGDANOV S P, KHRISTYUK N A. Diffusional chrome plating of steel by iodide transport[J]. Steel in Translation, 2017, 47(1): 78-83. [43] WAGNER B, HUTTNER A, BISCHOF D, et al. Chemical surface reactivity and morphological changes of bismuth triiodide (BiI3) under different environmental conditions[J]. Langmuir, 2020, 36(23): 6458-6464. [44] SHCHERBAKOV D, STEPANOV P, WEBER D, et al. Raman spectroscopy, photocatalytic degradation, and stabilization of atomically thin chromium tri-iodide[J]. Nano Letters, 2018, 18(7): 4214-4219. [45] SUBHAN F, HONG J S. Magnetic anisotropy and Curie temperature of two-dimensional VI3 monolayer[J]. Journal of Physics Condensed Matter, 2020, 32(24): 245803. [46] LONG C, WANG T, JIN H, et al. Stacking-independent ferromagnetism in bilayer VI3 with half-metallic characteristic[J]. The Journal of Physical Chemistry Letters, 2020, 11(6): 2158-2164. [47] WANG P J, LUO S Y, BOYLE L, et al. Controlled fractal growth of transition metal dichalcogenides[J]. Nanoscale, 2019, 11(36): 17065-17072. [48] JALOULI A, KILINC M, WANG P J, et al. Spatial mapping of exciton transition energy and strain in composition graded WS2(1-x)Se2x monolayer[J]. Journal of Applied Physics, 2020, 128(12): 124304. [49] WANG P J, YANG D R, PI X D. Toward wafer-scale production of 2D transition metal chalcogenides[J]. Advanced Electronic Materials, 2021, 7(8): 2100278. [50] CONG C X, SHANG J Z, NIU L, et al. Anti-stokes photoluminescence of van der Waals layered semiconductor PbI2[J]. Advanced Optical Materials, 2017, 5(21): 1700609. [51] GISH J T, LEBEDEV D, STANEV T K, et al. Ambient-stable two-dimensional CrI3 via organic-inorganic encapsulation[J]. ACS Nano, 2021, 15(6): 10659-10667. [52] FAN Q, HUANG J W, DONG N N, et al. Liquid exfoliation of two-dimensional PbI2 nanosheets for ultrafast photonics[J]. ACS Photonics, 2019, 6(4): 1051-1057. [53] WANG H Y, SONG T, SU X, et al. Green and efficient liquid-phase exfoliation of BiI3 nanosheets for catalytic carbon-carbon cross-coupling reactions[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(2): 1262-1267. [54] MU D, ZHOU W, LIU Y D, et al. Resolving the intrinsic bandgap and edge effect of BiI3 film epitaxially grown on graphene[J]. Materials Today Physics, 2021, 20: 100454. [55] LI P G, WANG C, ZHANG J H, et al. Single-layer CrI3 grown by molecular beam epitaxy[J]. Science Bulletin, 2020, 65(13): 1064-1071. [56] POPOV G, MATTINEN M, HATANP T, et al. Atomic layer deposition of PbI2 thin films[J]. Chemistry of Materials, 2019, 31(3): 1101-1109. [57] XIAO H, LIANG T, XU M S. Growth of ultraflat PbI2 nanoflakes by solvent evaporation suppression for high-performance UV photodetectors[J]. Small, 2019, 15(33): 1901767. [58] HUANG Z, SUN Y, ZHANG Z, et al. Tunable excitonic properties in two-dimensional heterostructures based on solution-processed PbI2 flakes[J]. Journal of Materials Science, 2020, 55(24): 10656-10667. [59] WEI Q, CHEN J H, DING P, et al. Synthesis of easily transferred 2D layered BiI3 nanoplates for flexible visible-light photodetectors[J]. ACS Applied Materials & Interfaces, 2018, 10(25): 21527-21533. [60] ZHAO M, QIAO L. Rapid fabrication of submillimeter ultrathin CdI2 flakes via a facile hot plate-assisted vapor deposition method[J]. Journal of Physics: Conference Series, 2021, 1907(1): 012052. [61] GHOSHAL D, SHANG H Z, SUN X, et al. Orientation-controlled large-area epitaxial PbI2 thin films with tunable optical properties[J]. ACS Applied Materials & Interfaces, 2021, 13(27): 32450-32460. [62] WANGYANG P H, SUN H, ZHU X H, et al. Mechanical exfoliation and Raman spectra of ultrathin PbI2 single crystal[J]. Materials Letters, 2016, 168: 68-71. [63] SINHA S, ZHU T S, FRANCE-LANORD A, et al. Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene[J]. Nature Communications, 2020, 11(1): 823. [64] YASUNAMI T, NAKAMURA M, INAGAKI S, et al. Molecular beam epitaxy of two-dimensional semiconductor BiI3 films exhibiting sharp exciton absorption[J]. Applied Physics Letters, 2021, 119(24): 243101. [65] SUN H, ZHAO B J, YANG D Y, et al. Flexible X-ray detector based on sliced lead iodide crystal[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2017, 11(2): 1600397. [66] QI Z Y, YANG T F, LI D, et al. High-responsivity two-dimensional p-PbI2/n-WS2 vertical heterostructure photodetectors enhanced by photogating effect[J]. Materials Horizons, 2019, 6(7): 1474-1480. [67] JIN Z X, HU C, LAN Y, et al. Epitaxial growth of PbS nanocrystals from PbI2 nanosheet templates and its application in fast near-infrared photodetectors[J]. Advanced Optical Materials, 2020, 8(22): 2001319. [68] ZHANG J Y, SONG T, ZHANG Z J, et al. Layered ultrathin PbI2 single crystals for high sensitivity flexible photodetectors[J]. Journal of Materials Chemistry C, 2015, 3(17): 4402-4406. [69] WEI Q, SHEN B, CHEN Y, et al. Large-sized PbI2 single crystal grown by co-solvent method for visible-light photo-detector application[J]. Materials Letters, 2017, 193: 101-104. [70] LAN C, DONG R, ZHOU Z, et al. Large-scale synthesis of freestanding layer-structured PbI2 and MAPbI3 nanosheets for high-performance photodetection[J]. Advanced Materials, 2017, 29(39): 1702759. [71] LI C Y, LI W J, CHENG M M, et al. High sensitive and broadband photodetectors based on hybrid PbI2 nanosheet/CdSe nanobelt[J]. Advanced Optical Materials, 2021, 9(20): 2100927. [72] WEI Q, WANG Y R, YIN J, et al. High-performance visible-light photodetectors built on 2D-nanoplate-assembled large-scale BiI3 films[J]. Advanced Electronic Materials, 2019, 5(7): 1900159. [73] WANG F K, ZHANG Z, ZHANG Y, et al. Honeycomb RhI3 flakes with high environmental stability for optoelectronics[J]. Advanced Materials, 2020, 32(25): 2001979. [74] YANG C Q, PENG Y K, SIMON T, et al. Control of PbI2 nucleation and crystallization: towards efficient perovskite solar cells based on vapor-assisted solution process[J]. Materials Research Express, 2018, 5(4): 045507. [75] LEYDEN M R, JIANG Y, QI Y B. Chemical vapor deposition grown formamidinium perovskite solar modules with high steady state power and thermal stability[J]. Journal of Materials Chemistry A, 2016, 4(34): 13125-13132. [76] SHAHIDUZZAMAN M, HAMADA K, YAMAMOTO K, et al. Thermal control of PbI2 film growth for two-step planar perovskite solar cells[J]. Crystal Growth & Design, 2019, 19(9): 5320-5325. [77] SUN Y, YIN Y, POLS M, et al. Engineering the phases and heterostructures of ultrathin hybrid perovskite nanosheets[J]. Advanced Materials, 2020, 32(34): 2002392. [78] LI C S, KUO S W, WU Y T, et al. Van der waals epitaxy of horizontally orientated bismuth iodide/silicon heterostructure for nonvolatile resistive-switching memory with multistate data storage[J]. Advanced Materials Interfaces, 2020, 7(17): 2000630. [79] HUANG B, CLARK G, NAVARRO-MORATALLA E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J]. Nature, 2017, 546(7657): 270-273. [80] XU Y, RAY A, SHAO Y T, et al. Coexisting ferromagnetic-antiferromagnetic state in twisted bilayer CrI3[J]. Nature Nanotechnology, 2021: 1-5. [81] CHENG X, CHENG Z X, WANG C, et al. Light helicity detector based on 2D magnetic semiconductor CrI3[J]. Nature Communications, 2021, 12(1): 6874. |
[1] | 张宁宁, 鱼海涛, 刘艳艳, 薛丹. 4d过渡金属掺杂单层WS2的电子结构和光学性质研究[J]. 人工晶体学报, 2025, 54(1): 77-84. |
[2] | 李洋, 崔楠, 傅年庆, 陈有辰, 潘书生, 林生晃. 柔性透明二维光电器件在智能化信息领域中的应用[J]. 人工晶体学报, 2024, 53(7): 1087-1105. |
[3] | 黄田, 马赛, 刘宵宇, 黎迎, 武红, 徐永兵, 魏陆军, 李峰, 普勇. 具有大磁各向异性和高居里温度的二维笼目磁性材料Fe3As[J]. 人工晶体学报, 2023, 52(8): 1413-1421. |
[4] | 张万贺, 胡建英, 周涛, 吕怡婷, 王克良. 镁和铝离子电池负极材料Nb2N的第一性原理研究[J]. 人工晶体学报, 2023, 52(8): 1451-1457. |
[5] | 王高凯, 张兴旺. 六方氮化硼外延生长研究进展[J]. 人工晶体学报, 2023, 52(5): 825-841. |
[6] | 白玲, 宁静, 张进成, 王东, 王博宇, 武海迪, 赵江林, 陶然, 李忠辉. 多晶金刚石衬底范德瓦耳斯外延GaN薄膜[J]. 人工晶体学报, 2023, 52(5): 901-908. |
[7] | 格畅, 周国香, 秦旭晨, 王广, 阎童童, 李佳. 二维Janus型铬硫化物电子和压电性质研究[J]. 人工晶体学报, 2023, 52(4): 613-620. |
[8] | 张俊峰, 孙再征, 孔腾飞, 蔡根旺, 李亚平, 胡莎, 樊志琴. 射频磁控溅射法制备MoS2薄膜的最佳工艺参数研究[J]. 人工晶体学报, 2023, 52(2): 271-280. |
[9] | 王栋, 魏子健, 张倩, 夏月庆, 张秀丽, 王天汉, 袁志华, 兰明明. 化学气相沉积法制备二维过渡金属硫族化合物研究进展[J]. 人工晶体学报, 2023, 52(1): 156-169. |
[10] | 赵清华, 郑丹, 陈鹏, 王涛, 介万奇. 硒化铟材料的发展及其光电器件应用[J]. 人工晶体学报, 2022, 51(9-10): 1703-1721. |
[11] | 崔玉青, 唐军利, 张晓. Ar气保护固相合成花状二硫化钼工艺研究[J]. 人工晶体学报, 2022, 51(8): 1445-1450. |
[12] | 刘涵, 高蕾, 薛宇飞, 叶宇娇, 曾春华. 新型二维铜族硫族化合物的研究进展[J]. 人工晶体学报, 2022, 51(8): 1493-1510. |
[13] | 张斌, 胡前库, 李丹丹, 王李波, 周爱国. 熔盐法制备三元层状MAX相陶瓷的研究进展[J]. 人工晶体学报, 2022, 51(6): 1132-1140. |
[14] | 宁博, 张国欣, 闫冰, 赵杨, 石轩, 赵洪泉. Y掺杂WS2二维材料的第一性原理研究[J]. 人工晶体学报, 2022, 51(4): 643-651. |
[15] | 袁文宾, 钟敏. 气相输运沉积制备c轴择优取向的碘化铋薄膜[J]. 人工晶体学报, 2022, 51(4): 637-642. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||