[1] CHEN J, DU X, LUO Q M, et al. A review of switching oscillations of wide bandgap semiconductor devices[J]. IEEE Transactions on Power Electronics, 2020, 35(12): 13182-13199. [2] BROTHERS J A, BEECHNER T. GaN module design recommendations based on the analysis of a commercial 3-phase GaN module[C]//2019 IEEE Energy Conversion Congress and Exposition. September 29 - October 3, 2019, Baltimore, MD, USA. IEEE, 2019: 4109-4116. [3] YU Z C, ZELTNER S, BOETTCHER N, et al. Heterogeneous integration of vertical GaN power transistor on Si capacitor for DC-DC converters[C]//2018 7th Electronic System-Integration Technology Conference (ESTC). September 18-21, 2018, Dresden, Germany. IEEE, 2018: 1-5. [4] LEE F C, ZHANG W L, HUANG X C, et al. A new package of high-voltage cascode gallium nitride device for high-frequency applications[C]//2015 IEEE International Workshop on Integrated Power Packaging. May 3-6, 2015, Chicago, IL, USA. IEEE, 2015: 9-15. [5] CHEN J, XIE Y, TROMBLEY D, et al. System co-design of a 600V GaN FET power stage with integrated driver in a QFN system-in-package (QFN-SiP)[C]//2019 IEEE 69th Electronic Components and Technology Conference. May 28-31, 2019, Las Vegas, NV, USA. IEEE, 2019: 1221-1226. [6] 郝 跃,张金风,张进成.氮化物宽禁带半导体材料与电子器件[M].北京:科学出版社,2013:225-227. HAO Y, ZHANG J F, ZHANG J C. Nitride wide band gap semiconductor materials and electronic devices[M]. Beijing: Science Press, 2013:225-227(in Chinese). [7] EGAWA T, ZHAO G Y, ISHIKAWA H, et al. Characterizations of recessed gate AlGaN/GaN HEMTs on sapphire[J]. IEEE Transactions on Electron Devices, 2001, 48(3): 603-608. [8] 陈堂胜,孔月婵,吴立枢.金刚石衬底GaN HEMT研究进展[J].固体电子学研究与进展,2016,36(5):360-364. CHEN T S, KONG Y C, WU L S. The research progress of GaN-on-diamond HEMTs[J]. Research & Progress of SSE, 2016, 36(5): 360-364(in Chinese). [9] LETELLIER A, DUBOIS M R, TROVO J P F, et al. Calculation of printed circuit board power-loop stray inductance in GaN or high di/dt applications[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 612-623. [10] MATSUURA K, YANAGI H, TOMIOKA S, et al. Power-density development of a 5MHz-switching DC-DC converter[C]//2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition. February 5-9, 2012, Orlando, FL, USA. IEEE, 2012: 2326-2332. [11] JI S, REUSCH D, LEE F C. High-frequency high power density 3-D integrated gallium-nitride-based point of load module design[J]. IEEE Transactions on Power Electronics, 2012, 28(9): 4216-4226. [12] WANG K P, YANG X, WANG L L, et al. Instability analysis and oscillation suppression of enhancement-mode GaN devices in half-bridge circuits[J]. IEEE Transactions on Power Electronics, 2018, 33(2): 1585-1596. [13] LIU Z Y, HUANG X C, ZHANG W L, et al. Evaluation of high-voltage cascode GaN HEMT in different packages[C]//2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014. March 16-20, 2014, Fort Worth, TX, USA. IEEE, 2014: 168-173. [14] WANG Z, HONEA J, SHI Y X, et al. Investigation of driver circuits for GaN HEMTs in leaded packages[C]//2014 IEEE Workshop on Wide Bandgap Power Devices and Applications. October 13-15, 2014, Knoxville, TN, USA. IEEE, 2014: 81-87. [15] REUSCH D, STRYDOM J. Understanding the effect of PCB layout on circuit performance in a high-frequency gallium-nitride-based point of load converter[J]. IEEE Transactions on Power Electronics, 2014, 29(4): 2008-2015. [16] WANG K P, WANG L L, YANG X, et al. A multiloop method for minimization of parasitic inductance in GaN-based high-frequency DC-DC converter[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4728-4740. [17] SUN B N, ZHANG Z, ANDERSEN M A E. Research of low inductance loop design in GaN HEMT application[C]//IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society. October 21-23, 2018, Washington, DC, USA. IEEE, 2018: 1466-1470. [18] SUN B N, JØRGENSEN K L, ZHANG Z, et al. Multi-physic analysis for GaN transistor PCB layout[C]//2019 IEEE Applied Power Electronics Conference and Exposition. March 17-21, 2019, Anaheim, CA, USA. IEEE, 2019: 3407-3413. [19] ABDULLAH Y, LI H, WANG J. Evaluation of 600 V direct-drive GaN HEMT and a comparison to GaN GIT[C]//2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA). October 30-November 1, 2017, Albuquerque, NM, USA. IEEE, 2017: 273-276. [20] NEXPERIA. Circuit design and PCB layout recommendations for GaN FET half bridges[EB/OL]. (2019-02-13)[2022-02-25]. https://assets.nexperia.com/documents/application-note/AN90006.pdf [21] GaN Systems. PCB Layout Considerations with GaN E-HEMTs[EB/OL]. (2021-07-20)[2022-02-25]. https://gansystems.com/wp-content/uploads/2021/07/GN009-PCB-Layout-Considerations-with-GaN-E-HEMTs_20210720.pdf [22] YANG S S, SOH J H, KIM R Y. Parasitic inductance reduction design method of vertical lattice loop structure for stable driving of GaN HEMT[C]//2019 IEEE 4th International Future Energy Electronics Conference. November 25-28, 2019, Singapore. IEEE, 2019: 1-8. [23] CHANDER S, SINGH P, GUPTA S, et al. Self heating effects in GaN high electron mobility transistor for different passivation material[J]. Defence Science Journal, 2020, 70(5): 511-514. [24] HARRIS T R, DAVIS W R, LIPA S, et al. Vertical stack thermal characterization of heterogeneous integration and packages[C]//2019 International 3D Systems Integration Conference (3DIC). October 8-10, 2019, Sendai, Japan. IEEE, 2019: 1-3. [25] FRANCIS D, WASSERBAUER J, FAILI F. GaN-HEMT epilayers on diamond substrates: recent progress[J]. In Proc: CS MANTECH, Austin, TX 133, 2007: 133-136. [26] CHU K K, YUROVCHAK T, CHAO P C, et al. Thermal modeling of high power GaN-on-diamond HEMTs fabricated by low-temperature device transfer process[C]//2013 IEEE Compound Semiconductor Integrated Circuit Symposium. October 13-16, 2013, Monterey, CA, USA. IEEE, 2013: 1-4. [27] 杨士奇,任泽阳,张金风,等.硅基氮化镓异质结材料与多晶金刚石集成生长研究[J].固体电子学研究与进展,2021,41(1):18-23. YANG S Q, REN Z Y, ZHANG J F, et al. Research on growth of poly-crystalline diamond on Si-based GaN heterojunction material[J]. Research & Progress of SSE, 2021, 41(1): 18-23(in Chinese). [28] CHU K K, CHAO P C, DIAZ J A, et al. S2-T4: low-temperature substrate bonding technology for high power GaN-on-diamond HEMTs[C]//2014 Lester Eastman Conference on High Performance Devices (LEC). August 5-7, 2014, Ithaca, NY, USA. IEEE, 2014: 1-4. [29] CHAO P C, CHU K, CREAMER C, et al. Low-temperature bonded GaN-on-diamond HEMTs with 11 W/mm output power at 10 GHz[J]. IEEE Transactions on Electron Devices, 2015, 62(11): 3658-3664. [30] LIU T T, KONG Y C, WU L S, et al. 3-inch GaN-on-diamond HEMTs with device-first transfer technology[J]. IEEE Electron Device Letters, 2017, 38(10): 1417-1420. [31] GERRER T, CIMALLA V, WALTEREIT P, et al. Transfer of AlGaN/GaN RF-devices onto diamond substrates via van der Waals bonding[J]. 2017 12th European Microwave Integrated Circuits Conference (EuMIC), 2017: 25-28. [32] MU F W, HE R, SUGA T. Room temperature GaN-diamond bonding for high-power GaN-on-diamond devices[J]. Scripta Materialia, 2018, 150: 148-151. [33] MOTALA M J, BLANTON E W, HILTON A, et al. Transferrable AlGaN/GaN high-electron mobility transistors to arbitrary substrates via a two-dimensional boron nitride release layer[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 21837-21844. [34] ZHANG Y, XING Y H, HAN J, et al. Improving AlN crystalline quality by high-temperature ammonia-free microwave plasma chemical vapor deposition[J]. Applied Physics Express, 2021, 14(5): 055503. [35] 田寒梅,刘金龙,陈良贤,等.微波等离子体下GaN的分解与纳米金刚石膜的沉积[J].人工晶体学报,2015,44(1):7-12. TIAN H M, LIU J L, CHEN L X, et al. Decomposition of GaN and direct deposition of nano-diamond film in microwave plasma[J]. Journal of Synthetic Crystals, 2015, 44(1): 7-12(in Chinese). [36] TIWARI R N, CHANG L. Etching of GaN by microwave plasma of hydrogen[J]. Semiconductor Science and Technology, 2010, 25(3): 035010. [37] MCCAULEY T G, GRUEN D M, KRAUSS A R. Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma[J]. Applied Physics Letters, 1998, 73(12): 1646-1648. [38] PETHERBRIDGE J R, MAY P W, PEARCE S R J, et al. Low temperature diamond growth using CO2/CH4 plasmas: molecular beam mass spectrometry and computer simulation investigations[J]. Journal of Applied Physics, 2000, 89(2): 1484-1492. [39] MAY P W, TSAI H Y, WANG W N, et al. Deposition of CVD diamond onto GaN[J]. Diamond and Related Materials, 2006, 15(4/5/6/7/8): 526-530. [40] YAMADA H, CHAYAHARA A, MOKUNO Y. Effects of intentionally introduced nitrogen and substrate temperature on growth of diamond bulk single crystals[J]. Japanese Journal of Applied Physics, 2016, 55(1S): 01AC07. [41] 付方彬,金 鹏,刘雅丽,等.MPCVD生长半导体金刚石材料的研究现状[J].微纳电子技术,2016,53(9):571-581+587. FU F B, JIN P, LIU Y L, et al. Research status of the semiconductor diamond materials grown by the MPCVD[J]. Micronanoelectronic Technology, 2016, 53(9): 571-581+587(in Chinese). [42] 林 晨,李义锋,张锦文.微波等离子体化学气相沉积方法制备纳米金刚石薄膜[J].功能材料,2021,52(7):7001-7005+7011. LIN C, LI Y F, ZHANG J W. Nanocrystalline diamond film growth by microwave plasma enhanced chemical vapor deposition (MPCVD)[J]. Journal of Functional Materials, 2021, 52(7): 7001-7005+7011(in Chinese). [43] YATES L, ANDERSON J, GU X, et al. Low thermal boundary resistance interfaces for GaN-on-diamond devices[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 24302-24309. [44] SUN H R, SIMON R B, POMEROY J W, et al. Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications[J]. Applied Physics Letters, 2015, 106(11): 111906. [45] POMEROY J W, BERNARDONI M, DUMKA D C, et al. Low thermal resistance GaN-on-diamond transistors characterized by three-dimensional Raman thermography mapping[J]. Applied Physics Letters, 2014, 104(8): 083513. [46] CHO J, WON Y, FRANCIS D, et al. Thermal interface resistance measurements for GaN-on-diamond composite substrates[C]//2014 IEEE Compound Semiconductor Integrated Circuit Symposium. October 19-22, 2014, La Jolla, CA, USA. IEEE, 2014: 1-4. [47] ZHENG X F, WANG A C, HOU X H, et al. Influence of the diamond layer on the electrical characteristics of AlGaN/GaN high-electron-mobility transistors[J]. Chinese Physics Letters, 2017, 34(2): 027301. [48] ANDERSON T J, HOBART K D, TADJER M J, et al. Nanocrystalline diamond for near junction heat spreading in GaN power HEMTs[J]. 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2013: 1-4. [49] ZHANG H, GUO Z X, LU Y F. Enhancement of hot spot cooling by capped diamond layer deposition for multifinger AlGaN/GaN HEMTs[J]. IEEE Transactions on Electron Devices, 2020, 67(1): 47-52. [50] ZHU T, ZHENG X F, CAO Y R, et al. Study on the effect of diamond layer on the performance of double-channel AlGaN/GaN HEMTs[J]. Semiconductor Science and Technology, 2020, 35(5): 055006. [51] Fujitsu Limited, Fujitsu Laboratories Limited. Fujitsu successfully grows diamond film to boost heat dissipation efficiency of GaN HEMT[DB/OL]. (2019-12-05) [2021-11-14]. https://www.fujitsu.com/global/about/resources/news/press-releases/2019/1205-01.html [52] 鲍 婕,周德金,陈珍海,等.GaN HEMT器件封装技术研究进展[J].电子与封装,2021,21(2):7-18+5. BAO J, ZHOU D J, CHEN Z H, et al. Research progress of GaN HEMT package technology[J]. Electronics & Packaging, 2021, 21(2): 7-18+5(in Chinese). [53] FÄRCAŞ C, CIOCAN I, PETREUŞ D, et al. Thermal modeling and analysis of a power device heat sinks[C]//2012 IEEE 18th International Symposium for Design and Technology in Electronic Packaging. October 25-28, 2012, Alba Iulia, Romania. IEEE, 2012: 217-222. [54] HSU L H, LAI Y Y, TU P T, et al. Development of GaN HEMTs fabricated on silicon, silicon-on-insulator, and engineered substrates and the heterogeneous integration[J]. Micromachines, 2021, 12(10): 1159. [55] 氮化镓科技汇:QST衬底为实现非常厚的GaN缓冲层提供路径[EB/OL].(2018-05-03)[2022-02-06]. http://www.ganhemt.com/jish/78.html. Gallium nitride Technology Convergence: QST substrates provide a path to achieve very thick GaN buffers[EB/OL].(2018-05-03)[2022-02-06]. http://www.ganhemt.com/jish/78.html. [56] Semiconductor TODAY: Imec and Qromis present p-GaN HEMTs on 200 mm CTE-matched substrates. [EB/OL](2018-04-06)[2022-02-06]. http://www.semiconductor-today.com/news_items/2018/apr/imec-qromis_060418.shtml [57] GEENS K, LI X D, ZHAO M, et al. 650 V p-GaN gate power HEMTs on 200 mm engineered substrates[C]//2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA). October 29-31, 2019, Raleigh, NC, USA. IEEE, 2019: 292-296. [58] YAN Z, LIU G, KHAN J M, et al. Graphene quilts for thermal management of high-power GaN transistors[J]. Nature Communications, 2012, 3: 827. [59] LI L, FUKUI A, WAKEJIMA A. Bonding GaN on high thermal conductivity graphite composite with adequate interfacial thermal conductance for high power electronics applications[J]. Applied Physics Letters, 2020, 116(14): 142105. [60] MOHANTY S K, CHEN Y Y, YEH P H, et al. Thermal management of GaN-on-Si high electron mobility transistor by copper filled micro-trench structure[J]. Scientific Report, 2019, 9: 19691. [61] ZHAO M L, TANG X S, HUO W X, et al. Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate[J]. Chinese Physics B, 2020, 29(4): 584-587. [62] WANG W J, CHEN J, LUNDH J S, et al. Modulation of the two-dimensional electron gas channel in flexible AlGaN/GaN high-electron-mobility transistors by mechanical bending[J]. Applied Physics Letters, 2020, 116(12): 123501. [63] ZHANG W L, YANG F, et al. Thermal design and performance of top-side cooled QFN 12×12 package for automotive 650-V GaN power stage[EB/OL]. (2021-03-10)[2022-02-25]. https://www.ti.com/lit/an/snoaa70/snoaa70.pdf?ts=1645757400545&ref_url=https%253A%252F%252Fcn.bing.com%252F. [64] CHENG S, CHOU P C. Novel packaging design for high-power GaN-on-Si high electron mobility transistors (HEMTs)[J]. International Journal of Thermal Sciences, 2013, 66: 63-70. [65] LU S C, ZHAO T Y, BURGOS R, et al. Packaging of (650 V, 150 A) GaN HEMT with low parasitics and high thermal performance[C]//2021 International Conference on Electronics Packaging (ICEP). May 12-14, 2021. Tokyo, Japan. IEEE, 2021. [66] LI B Y, YANG X, WANG K P, et al. A compact double-sided cooling 650V/30A GaN power module with low parasitic parameters[J]. IEEE Transactions on Power Electronics, 2022, 37(1): 426-439. [67] LI X, CHEN G, CHEN X, et al. High temperature ratcheting behavior of nano-silver paste sintered lap shear joint under cyclic shear force[J]. Microelectronics Reliability, 2013, 53(1): 174-181. [68] YU C Y, YANG D S, ZHAO D L, et al. Reliability of nano-silver soldering paste with high thermal conductivity[C]//2019 20th International Conference on Electronic Packaging Technology(ICEPT). August 12-15, 2019, Hong Kong, China. IEEE, 2019: 1-4. [69] HERAEUS. Low temperature non-pressure dispensing sinter paste for power electronic applications[EB/OL]. (2020-03-13)[2022-02-25]. https://www.heraeus.com/en/het/products_and_solutions_het/sinter_materials/magic_da295a/magic_da295a.html?_ga=2.237279241.883563861.1645757880-91757731.1636944859. |