人工晶体学报 ›› 2022, Vol. 51 ›› Issue (5): 759-780.
所属专题: 超硬材料与特殊环境晶体生长技术
李成明, 任飞桐, 邵思武, 牟恋希, 张钦睿, 何健, 郑宇亭, 刘金龙, 魏俊俊, 陈良贤, 吕反修
收稿日期:
2022-03-01
出版日期:
2022-05-15
发布日期:
2022-06-17
作者简介:
李成明(1962—),山西省人,博士,教授。E-mail:chengmli@mater.ustb.edu.cn; 李成明,北京科技大学教授,主要从事CVD金刚石膜与CVD金刚石单晶制备及其功能应用研究。先后主持和参与国家重大专项(子项目)、国家重点研发计划、国际政府间合作项目欧洲地平线计划2020、国家“863”计划、国家“973”计划、国家自然科学基金等项目30多项。发表学术论文300余篇,授权国家发明专利70余项。主持研究的金刚石扩热板应用于北斗卫星系列,获得2019年教育部技术发明一等奖。获得其他省部级奖3项。
基金资助:
LI Chengming, REN Feitong, SHAO Siwu, MU Lianxi, ZHANG Qinrui, HE Jian, ZHENG Yuting, LIU Jinlong, WEI Junjun, CHEN Liangxian, LYU Fanxiu
Received:
2022-03-01
Online:
2022-05-15
Published:
2022-06-17
摘要: 化学气相沉积(CVD)技术的发展使得金刚石优异的综合性能得以充分发挥,在诸多领域获得应用,并有可能实现跨越式的发展。色心使得金刚石量子加速器初步显示了巨大可行性,包括紫外激光写入窗口等诸多应用场景将金刚石的光、电、热和力学综合优势发挥到了极致,超宽禁带金刚石半导体应用将很快实现,金刚石的散热应用也在不断拓展。本文在总结CVD金刚石的制备方法和性能特点的基础上,根据金刚石的本征特点和应用领域,将其分为量子级、电子级、光学级、热学级和力学级五类,对各类金刚石的研究和应用状况进行了详细阐述,进一步明晰CVD金刚石目前的发展状态,对研判其未来发展趋势有重要意义。
中图分类号:
李成明, 任飞桐, 邵思武, 牟恋希, 张钦睿, 何健, 郑宇亭, 刘金龙, 魏俊俊, 陈良贤, 吕反修. 化学气相沉积(CVD)金刚石研究现状和发展趋势[J]. 人工晶体学报, 2022, 51(5): 759-780.
LI Chengming, REN Feitong, SHAO Siwu, MU Lianxi, ZHANG Qinrui, HE Jian, ZHENG Yuting, LIU Jinlong, WEI Junjun, CHEN Liangxian, LYU Fanxiu. Progress of Chemical Vapor Deposition (CVD) Diamond[J]. Journal of Synthetic Crystals, 2022, 51(5): 759-780.
[1] 刘金龙,安 康,陈良贤,等.CVD金刚石自支撑膜的研究进展[J].表面技术,2018,47(4):1-10. LIU J L, AN K, CHEN L X, et al. Research progress of freestanding CVD diamond films[J]. Surface Technology, 2018, 47(4): 1-10(in Chinese). [2] 李成明,陈良贤,刘金龙,等.直流电弧等离子体喷射法制备金刚石自支撑膜研究新进展[J].金刚石与磨料磨具工程,2018,38(1):16-27. LI C M, CHEN L X, LIU J L, et al. Recent progress of free-standing diamond films prepared by DC arc plasma jet method[J]. Diamond & Abrasives Engineering, 2018, 38(1): 16-27(in Chinese). [3] 李一村,郝晓斌,代 兵,等.MPCVD单晶金刚石高速率和高品质生长研究进展[J].人工晶体学报,2020,49(6):979-989. LI Y C, HAO X B, DAI B, et al. Research progress on high rate and high quality growth of MPCVD single crystal diamond[J]. Journal of Synthetic Crystals, 2020, 49(6): 979-989(in Chinese). [4] 王艳丰,王宏兴.MPCVD单晶金刚石生长及其电子器件研究进展[J].人工晶体学报,2020,49(11):2139-2152. WANG Y F, WANG H X. Research progress of MPCVD single crystal diamond growth and diamond electronic devices[J]. Journal of Synthetic Crystals, 2020, 49(11): 2139-2152(in Chinese). [5] 李建军,范澄兴,程佑法,等.金刚石UV-Vis-MIR光谱常见特征综述[J].人工晶体学报,2021,50(1):158-166. LI J J, FAN C X, CHENG Y F, et al. Review for frequent characteristics of diamond UV-Vis-MIR spectra[J]. Journal of Synthetic Crystals, 2021, 50(1): 158-166(in Chinese). [6] WANG Y, WANG W H, YANG S L, et al. Two extreme crystal size scales of diamonds, large single crystal and nanocrystal diamonds: synthesis, properties and their mutual transformation[J]. New Carbon Materials, 2021, 36(3): 512-526. [7] ZHENG Y T, LI C M, LIU J L, et al. Diamond with nitrogen: states, control, and applications[J]. Functional Diamond, 2021, 1(1): 63-82. [8] 杨胶溪,高质量金刚石自支撑摸组织与性能研究[D]. 北京:北京科技大学, 2004. YANG J X. The study of microstructure and mechanical strength of high quality freestanding diamond films[D]. Beijing: University of Science and Technology Beijing, 2004(in Chinese). [9] ROBLEDO L, CHILDRESS L, BERNIEN H, et al. High-fidelity projective read-out of a solid-state spin quantum register[J]. Nature, 2011, 477(7366): 574-578. [10] 高远飞.单晶金刚石中色心的光学性质研究[D].郑州:郑州大学,2019. GAO Y F. The optical properties of color centers in single crystal diamond[D]. Zhengzhou: Zhengzhou University, 2019(in Chinese). [11] SIPAHIGIL A, EVANS R E, SUKACHEV D D, et al. An integrated diamond nanophotonics platform for quantum-optical networks[J]. Science, 2016, 354(6314): 847-850. [12] BRADAC C, GAO W B, FORNERIS J, et al. Quantum nanophotonics with group IV defects in diamond[J]. Nature Communications, 2019, 10: 5625. [13] ZHENG Y T, LI C M, LIU J L, et al. Chemical vapor deposited diamond with versatile grades: from gemstone to quantum electronics[J]. Frontiers of Materials Science, 2022, 16(1): 1-38. [14] MANSON N B, HARRISON J P. Photo-ionization of the nitrogen-vacancy center in diamond[J]. Diamond & Related Materials, 2005, 14(10): 1705-1710. [15] COLLINS A T. The Fermi level in diamond[J]. Journal of Physics: Condensed Matter, 2002, 14(14): 3743-3750. [16] DOHERTY M W, MANSON N B, DELANEY P, et al. The nitrogen-vacancy colour centre in diamond[J]. Physics Reports, 2013, 528(1): 1-45. [17] TAYLOR J M, CAPPELLARO P, CHILDRESS L, et al. High-sensitivity diamond magnetometer with nanoscale resolution[J]. Nature Physics, 2008, 4(10): 810-816. [18] 赵鹏举.基于金刚石中氮-空位色心的单分子顺磁共振谱学[D].合肥:中国科学技术大学,2021. ZHAO P J. Single-molecule paramagnetic resonance spectroscopy based on nitrogen-vacancy center in diamond[D]. Hefei: University of Science and Technology of China, 2021(in Chinese). [19] 赵博文. 金刚石NV色心的制备以及在量子测量领域的应用[D]. 合肥:中国科学技术大学,2020. ZHAO B W. Preparation of NV color center in diamond and its applications in quantum sensing[D]. Hefei: University of Science and Technology of China, 2020(in Chinese). [20] ZHOU J W, WANG P F, SHI F Z, et al. Quantum information processing and metrology with color centers in diamonds[J]. Frontiers of Physics, 2014, 9(5): 587-597. [21] CUI J M, SUN F W, CHEN X D, et al. Quantum statistical imaging of particles without restriction of the diffraction limit[J]. Physical Review Letters, 2013, 110(15): 153901. [22] ALKAHTANI M H, ALGHANNAM F, JIANG L K, et al. Fluorescent nanodiamonds: past, present, and future[J]. Nanophotonics, 2018, 7(8): 1423-1453. [23] 高 扬,徐超群,黄 魁,等.激光与微波功率对金刚石NV色心磁强计ESR谱线的影响研究[J].北京理工大学学报,2021,41(11):1222-1225. GAO Y, XU C Q, HUANG K, et al. Research on the influence of laser and microwave power on ESR spectrum of the diamond nitrogen vacancy centre ensemble magnetometer[J]. Transactions of Beijing Institute of Technology, 2021, 41(11): 1222-1225(in Chinese). [24] GOSS J P, JONES R, BREUER S J, et al. The twelve-line 1.682 eV luminescence center in diamond and the vacancy-silicon complex[J]. Physical Review Letters, 1996, 77(14): 3041-3044. [25] HEPP C, MüLLER T, WASELOWSKI V, et al. Electronic structure of the silicon vacancy color center in diamond[J]. Physical Review Letters, 2014, 112(3): 036405. [26] AHARONOVICH I. Silicon magic[J]. Nature Photonics, 2014, 8(11): 818-819. [27] 喻 彪.纳米金刚石硅-空位色心的制备及光学性能研究[D].合肥:中国科学技术大学,2021. YU B. Study on preparation and photoluminescence of silicon vacancy color centers in nanocrystalline diamond[D]. Hefei: University of Science and Technology of China, 2021(in Chinese). [28] SONG J, LI H D, LIN F, et al. Plasmon-enhanced photoluminescence of Si-V centers in diamond from a nanoassembled metal: diamond hybrid structure[J]. CrystEngComm, 2014, 16(36): 8356. [29] CHENG S H, SONG J, WANG Q L, et al. Plasmon resonance enhanced temperature-dependent photoluminescence of Si-V centers in diamond[J]. Applied Physics Letters, 2015, 107(21): 211905. [30] SIPAHIGIL A, JAHNKE K D, ROGERS L J, et al. Indistinguishable photons from separated silicon-vacancy centers in diamond[J]. Physical Review Letters, 2014, 113(11): 113602. [31] BHASKAR M K, SUKACHEV D D, SIPAHIGIL A, et al. Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide[J]. Physical Review Letters, 2017, 118(22): 223603. [32] IWASAKI T, MIYAMOTO Y, TANIGUCHI T, et al. Tin-vacancy quantum emitters in diamond[J]. Physical Review Letters, 2017, 119(25): 253601. [33] ZHANG H C, CHEN C K, MEI Y S, et al. Micron-sized diamond particles containing Ge-V and Si-V color centers[J]. Chinese Physics B, 2019, 28(7): 076103. [34] 刘志鑫.金刚石锗空位色心结构、电子结构及光学性质的第一性原理研究[D].包头:内蒙古科技大学,2020. LIU Z X. First principles study on the structures, electronic structures and optical prope rties of germanium vacancy color center in diamond[D]. Baotou: Inner Mongolia University of Science & Technology, 2020(in Chinese). [35] DOHERTY M. Quantum accelerators: a new trajectory of quantum computers[J]. Digitale Welt, 2021, 5(2): 74-79. [36] PEZZAGNA S, MEIJER J. Quantum computer based on color centers in diamond[J]. Applied Physics Reviews, 2021, 8(1): 011308. [37] DONG Y, XU J Y, ZHANG S C, et al. Composite-pulse enhanced room-temperature diamond magnetometry[J]. Functional Diamond, 2021, 1(1): 125-134. [38] BUCHER D B, AUDE CRAIK D P L, BACKLUND M P, et al. Quantum diamond spectrometer for nanoscale NMR and ESR spectroscopy[J]. Nature Protocols, 2019, 14(9): 2707-2747. [39] BHASKAR M K, RIEDINGER R, MACHIELSE B, et al. Experimental demonstration of memory-enhanced quantum communication[J]. Nature, 2020, 580(7801): 60-64. [40] ZHANG T T, PRAMANIK G, ZHANG K, et al. Toward quantitative bio-sensing with nitrogen-vacancy center in diamond[J]. ACS Sensors, 2021, 6(6): 2077-2107. [41] LIN S R, WENG C F, YANG Y J, et al. Temperature-dependent coherence properties of NV ensemble in diamond up to 600 K[J]. Physical Review B, 2021, 104(15): 155430. [42] CHEN N, MA H A, YAN B M, et al. Characterization of various centers in synthetic type ib diamond under HPHT annealing[J]. Crystal Growth & Design, 2018, 18(7): 3870-3876. [43] LI S, CHOU J P, WEI J, et al. Oxygenated (113) diamond surface for nitrogen-vacancy quantum sensors with preferential alignment and long coherence time from first principles[J]. Carbon, 2019, 145: 273-280. [44] ZHANG Q, GUO Y H, JI W T, et al. High-fidelity single-shot readout of single electron spin in diamond with spin-to-charge conversion[J]. Nature Communications, 2021, 12: 1529. [45] LI Q, WANG J F, YAN F F, et al. Room temperature coherent manipulation of single-spin qubits in silicon carbide with a high readout contrast[J]. National Science Review, 2021. [46] XIE T Y, ZHAO Z Y, KONG X, et al. Beating the standard quantum limit under ambient conditions with solid-state spins[J]. Science Advances, 2021, 7(32): eabg9204. [47] SAKAR B, LIU Y, SIEVERS S, et al. Quantum calibrated magnetic force microscopy[J]. Physical Review B, 2021, 104(21): 214427. [48] RODGERS L V H, HUGHES L B, XIE M Z, et al. Materials challenges for quantum technologies based on color centers in diamond[J]. MRS Bulletin, 2021, 46(7): 623-633. [49] 赵正平.超宽禁带半导体金刚石功率电子学研究的新进展[J].半导体技术,2021,46(1):1-14. ZHAO Z P. New research progress in ultra wide bandgap semiconductor diamond power electronics[J]. Semiconductor Technology, 2021, 46(1): 1-14(in Chinese). [50] 郑 彧,张 怡,童亚琦,等.掺硼金刚石膜研究进展及应用[J].人工晶体学报,2021,50(6):1138-1148. ZHENG Y, ZHANG Y, TONG Y Q, et al. Research progress and application of boron-doped diamond film[J]. Journal of Synthetic Crystals, 2021, 50(6): 1138-1148(in Chinese). [51] YANG H C, MA Y D, DAI Y. Progress of structural and electronic properties of diamond: a mini review[J]. Functional Diamond, 2021, 1(1): 150-159. [52] 顾珊珊,胡晓君,黄 凯.退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响[J].物理学报,2013,62(11):118101. GU S S, HU X J, HUANG K. Effects of annealing temperature on the microstructure and p-type conduction of B-doped nanocrystalline diamond films[J]. Acta Physica Sinica, 2013, 62(11): 118101(in Chinese). [53] 杨传径,陈庆东,杜 凯,等.利用金刚石纳米粉引晶方法制备高硼掺杂金刚石薄膜[J].河南科技大学学报(自然科学版),2009,30(3):15-17+22+110. YANG C J, CHEN Q D, DU K, et al. High B-doped diamond film grown by seeding with diamond powder[J]. Journal of Henan University of Science & Technology (Natural Science), 2009, 30(3): 15-17+22+110(in Chinese). [54] TAVARES C, OMNÈS F, PERNOT J, et al. Electronic properties of boron-doped{111}-oriented homoepitaxial diamond layers[J]. Diamond and Related Materials, 2006, 15(4/5/6/7/8): 582-585. [55] ZHU X H, SHAO S W, CHANG Y H, et al. -400 mA mm-1 drain current density normally-off polycrystalline diamond MOSFETs[J]. IEEE Electron Device Letters, 0354, PP(99): 1. [56] 孙 蕾,满卫东,汪建华,等.CVD金刚石薄膜半导体材料的研究进展[J].真空与低温,2008,14(3):134-139+171. SUN L, MAN W D, WANG J H, et al. Development of synthesizing cvd diamond films for semiconductor materials[J]. Vacuum and Cryogenics, 2008, 14(3): 134-139+171(in Chinese). [57] 李尚升,许安涛,王生艳,等.N型半导体金刚石的研究现状与展望[J].人工晶体学报,2016,45(11):2728-2734+2740. LI S S, XU A T, WANG S Y, et al. Research status and prospect of N type semiconductor diamond[J]. Journal of Synthetic Crystals, 2016, 45(11): 2728-2734+2740(in Chinese). [58] 韩佳宁.金刚石薄膜合成反应动力学及金刚石n型掺杂[D].保定:河北大学,2002. HAN J N. The mechanism of diamond growth and the doping of N-type diamond[D]. Baoding: Hebei University, 2002(in Chinese). [59] 赖康荣,刘向红,孙 毅,等.N掺杂对金刚石(100)和(111)表面电子性质的影响:基于第一性原理的理论研究[J].喀什师范学院学报,2012,33(6):25-30. LAI K R, LIU X H, SUN Y, et al. Effect of N-doping diamond(100) and(111) surface on electronic properties: based on first-principles theoretical study[J]. Journal of Kashgar Teachers College, 2012, 33(6): 25-30(in Chinese).. [60] 王广文,邵庆益.磷掺杂金刚石薄膜的电子结构及空位对其的影响[J].中国科学:物理学 力学 天文学,2010,40(7):869-875. WANG G W, SHAO Q Y. Electronic structure of phosphorus-doped diamond films and the effect of vacancy on them[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2010, 40(7): 869-875(in Chinese). [61] 李宗宝,王 霞,李 勇.调控硼硫掺杂比实现金刚石n型转变的研究[J].原子与分子物理学报,2021,38(6):142-150. LI Z B, WANG X, LI Y. N-type conversion of diamond by modulation of B-S codoping ratio[J]. Journal of Atomic and Molecular Physics, 2021, 38(6): 142-150(in Chinese). [62] LIU D Y, HAO L C, TENG Y, et al. Nitrogen modulation of boron doping behavior for accessible n-type diamond[J]. APL Materials, 2021, 9(8): 081106. [63] VOLPE P N, MURET P, PERNOT J, et al. Extreme dielectric strength in boron doped homoepitaxial diamond[J]. Applied Physics Letters, 2010, 97(22): 223501. [64] TRAORÉ A, MURET P, FIORI A, et al. Zr/oxidized diamond interface for high power Schottky diodes[J]. Applied Physics Letters, 2014, 104(5): 052105. [65] UMEZAWA H, IKEDA K, KUMARESAN R, et al. Increase in reverse operation limit by barrier height control of diamond Schottky barrier diode[J]. IEEE Electron Device Letters, 2009, 30(9): 960-962. [66] FUNAKI T, HIRANO M, UMEZAWA H, et al. High temperature switching operation of a power diamond Schottky barrier diode[J]. IEICE Electronics Express, 2012, 9(24): 1835-1841. [67] UEDA K, KAWAMOTO K, ASANO H. High-temperature and high-voltage characteristics of Cu/diamond Schottky diodes[J]. Diamond and Related Materials, 2015, 57: 28-31. [68] KITABAYASHI Y, KUDO T, TSUBOI H, et al. Normally-off C-H diamond MOSFETs with partial C-O channel achieving 2-kV breakdown voltage[J]. IEEE Electron Device Letters, 2017, 38(3): 363-366. [69] MASANTE C, PERNOT J, LETELLIER J, et al. 175V, >5.4 MV/Cm, 50 mΩ·cm2 at 250 ℃ diamond MOSFET and its reverse conduction[C]//2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD). May 19-23, 2019, Shanghai, China. IEEE, 2019: 151-154. [70] IWASAKI T, HOSHINO Y, TSUZUKI K, et al. High-temperature operation of diamond junction field-effect transistors with lateral p-n junctions[J]. IEEE Electron Device Letters, 2013, 34(9): 1175-1177. [71] SAHA N C, OISHI T, KIM S, et al. 145-MW/cm2 heteroepitaxial diamond MOSFETs with NO2 p-type doping and an Al2O3 passivation layer[J]. IEEE Electron Device Letters, 2020, 41(7): 1066-1069. [72] HIRAMA K, SATO H, HARADA Y, et al. Diamond field-effect transistors with 1.3 A/mm drain current density by Al2O3 passivation layer[J]. Japanese Journal of Applied Physics, 2012, 51: 090112. [73] YU X X, ZHOU J J, QI C J, et al. A high frequency hydrogen-terminated diamond MISFET with fT/fmax of 70/80 GHz[J]. IEEE Electron Device Letters, 2018, 39(9): 1373-1376. [74] YU C, ZHOU C J, GUO J C, et al. RF performance of hydrogenated single crystal diamond MOSFETs[C]//2019 IEEE International Conference on Electron Devices and Solid-State Circuits. June 12-14, 2019, Xi’an, China. IEEE, 2019: 1-3. [75] TADJER M J, ANDERSON T J, ANCONA M G, et al. GaN-on-diamond HEMT technology with TAVG=176 ℃ at PDC, max=56 W/mm measured by transient thermoreflectance imaging[J]. IEEE Electron Device Letters, 2019, 40(6): 881-884. [76] LEE W S, WON LEE K, LEE S H, et al. A GaN/diamond HEMTs with 23 W/mm for next generation high power RF application[C]//2019 IEEE MTT-S International Microwave Symposium. June 2-7, 2019, Boston, MA, USA. IEEE, 2019: 1395-1398. [77] CHAO P C, CHU K, CREAMER C, et al. Low-temperature bonded GaN-on-diamond HEMTs with 11 W/mm output power at 10 GHz[J]. IEEE Transactions on Electron Devices, 2015, 62(11): 3658-3664. [78] ZHAO D, HU C, LIU Z C, et al. Diamond MIP structure Schottky diode with different drift layer thickness[J]. Diamond and Related Materials, 2017, 73: 15-18. [79] ZHAO D, LIU Z C, ZHANG X F, et al. Analysis of diamond pseudo-vertical Schottky barrier diode through patterning tungsten growth method[J]. Applied Physics Letters, 2018, 112(9): 092102. [80] ZHAO D, LIU Z C, WANG J, et al. Fabrication of dual-termination Schottky barrier diode by using oxygen-/ fluorine-terminated diamond[J]. Applied Surface Science, 2018, 457: 411-416. [81] ZHAO D, LIU Z C, WANG J, et al. Reduction in reverse leakage current of diamond vertical Schottky barrier diode using SiNX field plate structure[J]. Results in Physics, 2019, 13: 102250. [82] SHAO G Q, WANG J, LIU Z C, et al. Performance-improved vertical Zr/diamond Schottky barrier diode with lanthanum hexaboride interfacial layer[J]. IEEE Electron Device Letters, 2021, 42(9): 1366-1369. [83] SANG D D, LI H D, CHENG S H, et al. Electrical transport behavior of n-ZnO nanorods/p-diamond heterojunction device at higher temperatures[J]. Journal of Applied Physics, 2012, 112(3): 036101. [84] LI H D, SANG D D, CHENG S H, et al. Epitaxial growth of ZnO nanorods on diamond and negative differential resistance of n-ZnO nanorod/p-diamond heterojunction[J]. Applied Surface Science, 2013, 280: 201-206. [85] WANG L Y, CHENG S H, WU C Z, et al. Fabrication and high temperature electronic behaviors of n-WO3 nanorods/p-diamond heterojunction[J]. Applied Physics Letters, 2017, 110(5): 052106. [86] LI C M, LIU J L, CHEN L X, et al. An amazing semiconductor choice for high-frequency FET: h-terminated polycrystalline diamond film prepared by DC arc jet CVD[J]. Physica Status Solidi C, 2014, 11(11/12): 1692-1696. [87] LIU J L, YU H, SHAO S W, et al. Carrier mobility enhancement on the H-terminated diamond surface[J]. Diamond and Related Materials, 2020, 104: 107750. [88] REN Z Y, LIANG Z F, SU K, et al. Polycrystalline diamond normally-off MESFET passivated by a MoO3 layer[J]. Results in Physics, 2021, 20: 103760. [89] REN Z Y, DING S C, LIANG Z F, et al. Diamond MOSFET with MoO3/Si3N4 doubly stacked gate dielectric[J]. Applied Physics Letters, 2022, 120(4): 042104. [90] CUI A, ZHANG J F, REN Z Y, et al. Microwave power performance analysis of hydrogen terminated diamond MOSFET[J]. Diamond and Related Materials, 2021, 118: 108538. [91] WANG Y F, WANG W, CHANG X H, et al. Hydrogen-terminated diamond field-effect transistor with a bilayer dielectric of HfSiO4/Al2O3[J]. Diamond and Related Materials, 2019, 99: 107530. [92] ZHOU C J, WANG J J, GUO J C, et al. Radiofrequency performance of hydrogenated diamond MOSFETs with alumina[J]. Applied Physics Letters, 2019, 114(6): 063501. [93] YU C, ZHOU C J, GUO J C, et al. 650 mW/mm output power density of H-terminated polycrystalline diamond MISFET at 10 GHz[J]. Electronics Letters, 2020, 56(7): 334-335. [94] WANG Y F, WANG W, ABBASI H N, et al. LiF/Al2O3 as dielectrics for MOSFET on single crystal hydrogen-terminated diamond[J]. IEEE Electron Device Letters, 2020, 41(6): 808-811. [95] 杨名超.氢终端金刚石表面氧处理及金刚石场效应晶体管稳定性的研究[D].长春:吉林大学,2020. YANG M C. Researches on oxygen treatment of Hydrogen-termined diamond and stability of diamond field effect transistors[D]. Changchun: Jilin University, 2020(in Chinese). [96] CHENG S H, SANG L W, LIAO M Y, et al. Integration of high-dielectric constant Ta2O5 oxides on diamond for power devices[J]. Applied Physics Letters, 2012, 101(23): 232907. [97] LIU K, ZHANG S, LIU B J, et al. Investigating the energetic band diagrams of oxygen-terminated CVD grown e6 electronic grade diamond[J]. Carbon, 2020, 169: 440-445. [98] QIAO P F, LIU K, ZHANG S, et al. Origin of two-dimensional hole gas formation on Si-treated diamond surfaces: surface energy band diagram perspective[J]. Applied Surface Science, 2022, 584: 152560. [99] ZHANG Z F, LIN C N, YANG X, et al. Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array[J]. Carbon, 2021, 173: 427-432. [100] YAO K Y, YANG C, ZANG X N, et al. Carbon SP2-SP3 technology: graphene-on-diamond thin film UV detector[C]//2014 IEEE 27th International Conference on Micro Electro Mechanical Systems. January 26-30, 2014, San Francisco, CA, USA. IEEE, 2014: 1159-1162. [101] LIU Z C, AO J P, LI F N, et al. Fabrication of three dimensional diamond ultraviolet photodetector through down-top method[J]. Applied Physics Letters, 2016, 109(15): 153507. [102] LIU Z C, LIN F, ZHAO D, et al. Fabrication and characterization of (100)-oriented single-crystal diamond p-i-n junction ultraviolet detector[J]. Physica Status Solidi (a), 2020, 217(21): 2000207. [103] XUE J J, LIU K, LIU B J, et al. UV-blue photodetectors based on n-SnOx/p-diamond heterojunctions[J]. Materials Letters, 2019, 257: 126621. [104] GUO Y Z, LIU J L, LIU J W, et al. Comparison of α particle detectors based on single-crystal diamond films grown in two types of gas atmospheres by microwave plasma-assisted chemical vapor deposition[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(5): 703-712. [105] GIROLAMI M, SERPENTE V, MASTELLONE M, et al. Self-powered solar-blind ultrafast UV-C diamond detectors with asymmetric Schottky contacts[J]. Carbon, 2022, 189: 27-36. [106] 刘金龙,朱肖华,郭彦召,等.金刚石探测器材料研制与中子探测性能研究[J].真空电子技术,2021(5): 46-53+72. LIU J L, ZHU X H, GUO Y Z, et al. Material development and neutron detection performance of diamond detector[J]. Vacuum Electronics, 2021(5): 46-53+72(in Chinese). [107] EKIMOV E A, SIDOROV V A, BAUER E D, et al. Superconductivity in diamond[J]. Nature, 2004, 428(6982): 542-545. [108] TAKANO Y, TAKENOUCHI T, ISHII S, et al. Superconducting properties of homoepitaxial CVD diamond[J]. Diamond and Related Materials, 2007, 16(4/5/6/7): 911-914. [109] OKAZAKI H, WAKITA T, MURO T, et al. Signature of high Tc above 25 K in high quality superconducting diamond[J]. Applied Physics Letters, 2015, 106(5): 052601. [110] WANG Z L, LUO Q, LIU L W, et al. The superconductivity in boron-doped polycrystalline diamond thick films[J]. Diamond and Related Materials, 2006, 15(4/5/6/7/8): 659-663. [111] ZHANG G F, ZHOU Y H, KORNEYCHUK S, et al. Superconductor-insulator transition driven by pressure-tuned intergrain coupling in nanodiamond films[J]. Physical Review Materials, 2019, 3(3): 034801. [112] 张 洁,刘其娅,赵 婷,等.碳基超导体的最新研究进展[J].低温物理学报,2017,39(6):45-50. ZHANG J, LIU Q Y, ZHAO T, et al. Recent progress of carbon based superconductor[J]. Chinese Journal of Low Temperature Physics, 2017, 39(6): 45-50(in Chinese). [113] TITOVA N, KARDAKOVA A I, TOVPEKO N, et al. Slow electron-phonon cooling in superconducting diamond films[J]. IEEE Transactions on Applied Superconductivity, 2016, 27(4): 1-4. [114] YANG N J, YU S Y, MACPHERSON J V, et al. Conductive diamond: synthesis, properties, and electrochemical applications[J]. Chemical Society Reviews, 2019, 48(1): 157-204. [115] 王伟华,代 兵,王 杨,等.金刚石光学窗口相关元件的研究进展[J].材料科学与工艺,2020,28(3):42-57. WANG W H, DAI B, WANG Y, et al. Recent progress of diamond optical window-related components[J]. Materials Science and Technology, 2020, 28(3): 42-57(in Chinese). [116] SHI Z T, YUAN Q L, WANG Y Z, et al. Optical properties of bulk single-crystal diamonds at 80-1200 K by vibrational spectroscopic methods[J]. Materials, 2021, 14(23): 7435. [117] 黄 平.MPCVD法制备光学级金刚石的研究[D].武汉:武汉工程大学,2017. HUANG P. Research of optical grade diamond deposition by MPCVD[D]. Wuhan: Wuhan Institute of Technology, 2017(in Chinese). [118] 杨国永, 熊绍阳, 鲁云祥, 等. 大尺寸自支撑金刚石膜制备工艺及其红外透过性能研究[J]. 硬质合金, 2020, 37(5): 350-356. YANG G Y, XIONG S Y, LU Y X, et al. Study of large-area free-standing diamond films and its property of infrared transmittance[J]. Cemented Carbide, 2020, 37(5): 350-356(in Chinese). [119] 李 博.MPCVD法制备光学级多晶金刚石膜及同质外延金刚石单晶[D].长春:吉林大学,2008. LI B. Preparation of optical grade polycrystalline diamond films and homoepitaxial single-crystal diamond by MPCVD[D]. Changchun: Jilin University, 2008(in Chinese). [120] 王启亮.CVD曲面金刚石膜和单晶金刚石的制备及性质研究[D].长春:吉林大学,2012. WANG Q L. Preparation and properties of CVD hemispherical diamond films and single crystal diamonds[D]. Changchun: Jilin University, 2012(in Chinese). [121] 相炳坤,左敦稳,李多生,等.大面积球面金刚石膜的均匀沉积研究[J].人工晶体学报,2009,38(1):33-38. XIANG B K, ZUO D W, LI D S, et al. Study on uniform deposition of spherical diamond film on a large area substrate[J]. Journal of Synthetic Crystals, 2009, 38(1): 33-38(in Chinese). [122] 吕反修,黑立富,李成明,等.直流电弧等离子体喷射法生长大尺寸金刚石单晶[J].超硬材料工程,2018,30(2):31-40. LU F X, HEI L F, LI C M, et al. Growth of large single crystal diamond by DC arc plasma jet[J]. Superhard Material Engineering, 2018, 30(2): 31-40(in Chinese). [123] 黄亚博,陈良贤,贾 鑫,等.CVD金刚石表面增透膜的研究进展[J].表面技术,2020,49(10):106-117. HUANG Y B, CHEN L X, JIA X, et al. Research progress of anti-reflection films on CVD diamond surface[J]. Surface Technology, 2020, 49(10): 106-117(in Chinese). [124] 张朝阳,魏俊俊,邢忠福,等.金刚石膜表面微结构红外增透性能研究[J].红外与激光工程,2021,50(2): 3788/IRLA20200199. ZHANG Z Y, WEI J J, XING Z F, et al. Study on infrared anti-reflection performance of diamond film with surface microstructure[J]. Infrared and Laser Engineering, 2021, 50(2): 3788/IRLA20200199(in Chinese). [125] 陈良贤,刘金龙,冯寅楠,等.金刚石上不同晶体结构Y2O3膜性质与增透性能研究[J].表面技术,2019,48(1):133-140. CHEN L X, LIU J L, FENG Y N, et al. Properties and anti-reflection performance of Y2O3 films with different crystal structures on diamond[J]. Surface Technology, 2019, 48(1): 133-140(in Chinese). [126] 左杨平,卢文壮,张圣斌,等.面向激光防护应用的金刚石/V2O5膜系设计与制备[J].红外与激光工程,2015,44(8):2491-2495. ZUO Y P, LU W Z, ZHANG S B, et al. Design and fabrication of diamond/V2O5 films in continuous laser protection[J]. Infrared and Laser Engineering, 2015, 44(8): 2491-2495(in Chinese). [127] 张 盛,张圣斌,刘 巍,等.金刚石衬底的V2O5薄膜激光损伤阈值研究[J].表面技术,2019,48(5):147-152. ZHANG S, ZHANG S B, LIU W, et al. Laser limiting performance of V2O5 thin films on diamond substrates[J]. Surface Technology, 2019, 48(5): 147-152(in Chinese). [128] SEREBRENNIKOV D, CLEMENTYEV E, SEMENOV A, et al. Optical performance of materials for X-ray refractive optics in the energy range 8-100 keV[J]. Journal of Synchrotron Radiation, 2016, 23(Pt 6): 1315-1322. [129] 邢义强,赵剑锟,李蔚成,等.微型X射线管金刚石光学窗口性能的模拟研究[J].核技术,2021,44(4):12-18. XING Y Q, ZHAO J K, LI W C, et al. Simulation study on the performance of micro X-ray tube with diamond optical window[J]. Nuclear Techniques, 2021, 44(4): 12-18(in Chinese). [130] ZHU J F, DU C H, BAO L Y, et al. Wideband output Brewster window for terahertz TWT amplifiers application[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(2): 133-136. [131] ANDREEVA M S, ARTYUSHKIN N V, KRYMSKII M I, et al. Effect of CO2-laser power density on the absorption coefficient of polycrystalline CVD diamonds[J]. Quantum Electronics, 2020, 50(12): 1140-1145. [132] 安晓明,葛新岗,刘晓晨,等.高功率CO2激光器CVD金刚石窗口制备研究[J].人工晶体学报,2021,50(6):1010-1015. AN X M, GE X G, LIU X C, et al. Preparation of CVD diamond window for high power CO2 laser[J]. Journal of Synthetic Crystals, 2021, 50(6): 1010-1015(in Chinese). [133] MILDREN R P, RABEAU J R. Optical engineering of diamond (MILDREN: DIAMOND OPTICS O-BK)// Intrinsic optical properties of diamond[M]. Germany, Wiley-VCH Verlag GmbH & Co. KGaA, 2013. [134] SABELLA A, PIPER J A, MILDREN R P. 1240 nm diamond Raman laser operating near the quantum limit[J]. Optics Letters, 2010, 35(23): 3874-3876. [135] BAI Z X, ZHAO C, QI Y Y, et al. Towards long-wave infrared lasing by diamond Raman conversion[C]//2020 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). August 2-6, 2020, Sydney, NSW, Australia. IEEE, 2020: 1-2. [136] 李牧野,杨学宗,孙玉祥,等.单频金刚石拉曼激光器研究进展(单频激光技术)[J/OL].红外与激光工程,2022:1-14. LI M Y, YANG X Z, SUN Y X et al. Single-longitudinal mode continuous-wave diamond Raman laser [J/OL]. Infrared and Laser Engineering,2022:1-14 (in Chinese). [137] 白振旭,杨学宗,陈 晖,等.高功率金刚石激光技术研究进展(特邀)[J].红外与激光工程,2020,49(12):3788/IRLA20201076. BAI Z X, YANG X Z, CHEN H, et al. Research progress of high-power diamond laser technology(Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 3788/IRLA20201076(in Chinese). [138] WILLIAMS R J, NOLD J, STRECKER M, et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond[J]. Laser & Photonics Reviews, 2015, 9(4): 405-411. [139] BAI Z X, WILLIAMS R J, KITZLER O, et al. Diamond Brillouin laser in the visible[J]. APL Photonics, 2020, 5(3): 031301. [140] ANTIPOV S, SABELLA A, WILLIAMS R J, et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2=15 beam[J]. Optics Letters, 2019, 44(10): 2506-2509. [141] ANTIPOV S, WILLIAMS R J, SABELLA A, et al. Analysis of a thermal lens in a diamond Raman laser operating at 1.1 kW output power[J]. Optics Express, 2020, 28(10): 15232-15239. [142] 杨国伟.金刚石薄膜作为红外窗口增透膜或保护膜的研究进展[J].激光与红外,1993,23(3):21-23+26. YANG G W. Development of diamond thin film for infrared window materials[J]. Laser & Infrared, 1993, 23(3): 21-23+26(in Chinese). [143] 伏开虎,金扬利,邱 阳,等.应用于ZnS、ZnSe和硫系玻璃表面的类金刚石膜研究进展[J].硅酸盐通报,2017,36(S1):87-93. FU K H, JIN Y L, QIU Y, et al. Progress of diamond-like carbon films applied on ZnS, ZnSe and chalcogenide glass[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(S1): 87-93(in Chinese). [144] 杨 雪,汪怡平,郭延龙,等.脉冲激光沉积类金刚石膜红外增透技术研究[J].红外与激光工程,2011,40(1):46-51. YANG X, WANG Y P, GUO Y L, et al. Key technology research for infrared transmittance of DLC film prepared by pulse laser deposition[J]. Infrared and Laser Engineering, 2011, 40(1): 46-51(in Chinese). [145] 王贵全,张锦荣,邵 毅,等.基于透射光谱的类金刚石膜光学参数反演[J].红外技术,2021,43(5):473-477. WANG G Q, ZHANG J R, SHAO Y, et al. Calculation of optical parameters of diamond-like carbon film based on transmission spectrum[J]. Infrared Technology, 2021, 43(5): 473-477(in Chinese). [146] 王庆祥.机载光电系统红外光学窗口类金刚石膜镀制工艺研究[J].航空维修与工程,2016(10):91-93. WANG Q X. Research on the diamond-like carbon deposition processes of optoelectronic system infrared optical window[J]. Aviation Maintenance & Engineering, 2016(10): 91-93(in Chinese). [147] 于 三,赵方海,金曾孙,等.金刚石薄膜热沉制备的研究[J].吉林大学自然科学学报,1990,28(3):75-76. YU S, ZHAO F H, JIN Z S, et al. The fabrication of heat sinks made of vapor growth diamond film[J]. Journal of Jilin University, 1990, 28(3): 75-76(in Chinese). [148] 熊礼威,汪建华,满卫东,等.微波CVD金刚石热沉片的制备研究[J].真空与低温,2009,15(1):9-13. XIONG L W, WANG J H, MAN W D, et al. Study on preparation of microwave CVD diamond heat spreader[J]. Vacuum and Cryogenics, 2009, 15(1): 9-13(in Chinese). [149] 满卫东,孙 蕾,吴宇琼,等.微波CVD金刚石薄膜用作LED散热片的制备[J].金刚石与磨料磨具工程,2008,28(2):1-4. MAN W D, SUN L, WU Y Q, et al. Microwave CVD diamond thin film for LED heat spreader[J]. Diamond & Abrasives Engineering, 2008, 28(2): 1-4(in Chinese). [150] HUANG Y B, CHEN L X, SHAO S W, et al. The 7-in. freestanding diamond thermal conductive film fabricated by DC arc Plasma Jet CVD with multi-stage magnetic fields[J]. Diamond and Related Materials, 2022, 122: 108812. [151] 杨士奇,任泽阳,张金风,等.硅基氮化镓异质结材料与多晶金刚石集成生长研究[J].固体电子学研究与进展,2021,41(1):18-23. YANG S Q, REN Z Y, ZHANG J F, et al. Research on growth of poly-crystalline diamond on Si-based GaN heterojunction material[J]. Research & Progress of SSE, 2021, 41(1): 18-23(in Chinese). [152] SUN H R, SIMON R B, POMEROY J W, et al. Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications[J]. Applied Physics Letters, 2015, 106(11): 111906. [153] SUN H, LIU D, POMEROY J W, et al. GaN-on-diamond: Robust mechanical and thermal properties[J]. CS MANTECH, 2016, 2011 (5): 201-204. [154] ZHOU Y, RAMANETI R, ANAYA J, et al. Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs[J]. Applied Physics Letters, 2017, 111(4): 041901. [155] ZHOU Y, ANAYA J, POMEROY J, et al. Barrier-layer optimization for enhanced GaN-on-diamond device cooling[J]. ACS Applied Materials & Interfaces, 2017, 9(39): 34416-34422. [156] 郑子轩.金刚石衬底GaN HEMT器件热特性分析[D].西安:西安理工大学,2021. ZHENG Z X. Analysis of thermal characteristics of GaN HEMT on diamond substrate[D]. Xi'an: Xi'an University of Technology, 2021(in Chinese). [157] LIU T T, KONG Y C, WU L S, et al. 3-inch GaN-on-diamond HEMTs with device-first transfer technology[J]. IEEE Electron Device Letters, 2017, 38(10): 1417-1420. [158] 陈堂胜,孔月婵,吴立枢.金刚石衬底GaN HEMT研究进展[J].固体电子学研究与进展,2016,36(5):360-364. CHEN T S, KONG Y C, WU L S. The research progress of GaN-on-diamond HEMTs[J]. Research & Progress of SSE, 2016, 36(5): 360-364(in Chinese). [159] GUO H X, KONG Y C, CHEN T S. Thermal simulation of high power GaN-on-diamond substrates for HEMT applications[J]. Diamond and Related Materials, 2017, 73: 260-266. [160] LIANG J B, KOBAYASHI A, SHIMIZU Y, et al. Fabrication of GaN/diamond heterointerface and interfacial chemical bonding state for highly efficient device design[J]. Advanced Materials, 2021, 33(43): 2104564. [161] SONG C, KIM J, CHO J. The effect of GaN epilayer thickness on the near-junction thermal resistance of GaN-on-diamond devices[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119992. [162] WANG K, RUAN K, HU W B, et al. Room temperature bonding of GaN on diamond wafers by using Mo/Au nano-layer for high-power semiconductor devices[J]. Scripta Materialia, 2020, 174: 87-90. [163] LU W, LI J, MIAO J Y, et al. Application of high-thermal-conductivity diamond for space phased array antenna[J]. Functional Diamond, 2021, 1(1): 189-196. [164] 吕反修,宋建华,唐伟忠,等.CVD金刚石自支撑膜的力学性能[J].热处理,2011,26(1):1-9. LU F X, SONG J H, TANG W Z, et al. Mechanical properties of CVD freestanding diamond film[J]. Heat Treatment, 2011, 26(1): 1-9(in Chinese). [165] 吕反修.金刚石膜制备与应用-上卷[M].北京:科学出版社,2014:566. LU F X. Preparation and application of diamond film-Volume I[M]. Beijing: Science Press, 2014:566(in Chinese). [166] 马志斌.MPCVD金刚石的制备与应用研究进展[J].金刚石与磨料磨具工程,2021,41(1):1-4. MA Z B. Research progress on preparation and application of MPCVD diamond[J]. Diamond & Abrasives Engineering, 2021, 41(1): 1-4(in Chinese). [167] DANG C Q, LU A L, WANG H Y, et al. Diamond semiconductor and elastic strain engineering[J]. Journal of Semiconductors, 2022, 43(2): 021801. [168] ZHAO Y, LI C M, LIU J L, et al. The interface and mechanical properties of a CVD single crystal diamond produced by multilayered nitrogen doping epitaxial growth[J]. Materials, 2019, 12(15): 2492. [169] AN K, CHEN L X, YAN X B, et al. Fracture behavior of diamond films deposited by DC arc plasma jet CVD[J]. Ceramics International, 2018, 44(11): 13402-13408. [170] AN K, CHEN L X, YAN X B, et al. Fracture strength and toughness of chemical-vapor-deposited polycrystalline diamond films[J]. Ceramics International, 2018, 44(15): 17845-17851. [171] 朱瑞华.CVD金刚石自支撑膜的制备与热物理性能研究[D].北京:北京科技大学,2015. ZHU R H. Preparation and thermophysical characteristics of self-standing diamond films[D]. Beijing: University of Science and Technology Beijing, 2015(in Chinese). [172] 段 萌,张运强,潘国庆,等.CVD金刚石膜与常用红外光学材料抗砂蚀性能对比研究[J].表面技术,2017,46(6):270-275. DUAN M, ZHANG Y Q, PAN G Q, et al. Comparison of sand erosion resistance of CVD diamond film and common infrared optical materials[J]. Surface Technology, 2017, 46(6): 270-275(in Chinese). [173] 孙洪涛,王小平,王丽军,等.CVD金刚石薄膜摩擦学性能的研究现状[J].材料导报,2014,28(5):47-52+73. SUN H T, WANG X P, WANG L J, et al. Current research status of tribological properties of CVD diamond films[J]. Materials Review, 2014, 28(5): 47-52+73(in Chinese). [174] GRUEN D M, ZUIKER C D, KRAUSS A R, et al. Carbon dimer, C2, as a growth species for diamond films from methane/hydrogen/argon microwave plasmas[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1995, 13(3): 1628-1632. [175] GRUEN D M, KRAUSS A R, ZUIKER C D, et al. Characterization of nanocrystalline diamond films by core-level photoabsorption[J]. Applied Physics Letters, 1996, 68(12): 1640-1642. [176] CHANDRAN M, KUMARAN C R, DUMPALA R, et al. Nanocrystalline diamond coatings on the interior of WC-Co dies for drawing carbon steel tubes: enhancement of tube properties[J]. Diamond and Related Materials, 2014, 50: 33-37. [177] 邓福铭,陈 立,邓雯丽,等.微/纳米金刚石复合涂层刀具的制备及切削试验[J].人工晶体学报,2015,44(10):2728-2733. DENG F M, CHEN L, DENG W L, et al. Preparation of micro/nano diamond composite coating tools and cutting tests[J]. Journal of Synthetic Crystals, 2015, 44(10): 2728-2733(in Chinese). [178] 吕反修,宋建华,唐伟忠,等.金刚石膜涂层硬质合金工具研究进展及产业化前景[J].热处理,2008,23(1):2-11. LU F X, SONG J H, TANG W Z, et al. Progress on the R & D of diamond film coated cemented tungsten carbide cutting tools and its industrialization prospect[J]. Heat Treatment, 2008, 23(1): 2-11(in Chinese). [179] LIN Q, CHEN S L, SHEN B, et al. CVD diamond coated drawing dies: a review[J]. Materials and Manufacturing Processes, 2021, 36(4): 381-408. [180] HE Y P, CUI Y X, SUN F H. Enhancement of adhesion strength and tribological performance of cvd diamond films on tungsten carbide substrates with high cobalt content via amorphous sic interlayers[J]. Surface Review and Letters, 2019, 26(9): 1950051. [181] ZHANG T, FENG Q, YU Z Y, et al. Effect of mechanical pretreatment on nucleation and growth of HFCVD diamond films on cemented carbide tools with a complex shape[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105016. [182] 李 巨,单智伟,马 恩.弹性应变工程[J].中国材料进展,2018,37(12):941-948+993. LI J, SHAN Z W, MA E. Elastic strain engineering[J]. Materials China, 2018, 37(12): 941-948+993(in Chinese). [183] WHEELER J M, RAGHAVAN R, WEHRS J, et al. Approaching the limits of strength: measuring the uniaxial compressive strength of diamond at small scales[J]. Nano Letters, 2016, 16(1): 812-816. [184] BANERJEE A, BERNOULLI D, ZHANG H T, et al. Ultralarge elastic deformation of nanoscale diamond[J]. Science, 2018, 360(6386): 300-302. [185] NIE A M, BU Y Q, LI P H, et al. Approaching diamond’s theoretical elasticity and strength limits[J]. Nature Communications, 2019, 10: 5533. [186] DANG C Q, CHOU J P, DAI B, et al. Achieving large uniform tensile elasticity in microfabricated diamond[J]. Science, 2021, 371(6524): 76-78. [187] LIU C, SONG X Q, LI Q, et al. Superconductivity in compression-shear deformed diamond[J]. Physical Review Letters, 2020, 124(14): 147001. [188] KAISER K, SCRIVEN L M, SCHULZ F, et al. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon[J]. Science, 2019, 365(6459): 1299-1301. [189] YANG X G, YAO M G, WU X Y, et al. Novel superhard sp3 carbon allotrope from cold-compressed C70 peapods[J]. Physical Review Letters, 2017, 118(24): 245701. [190] YUE Y H, GAO Y F, HU W T, et al. Hierarchically structured diamond composite with exceptional toughness[J]. Nature, 2020, 582(7812): 370-374. |
[1] | 高嘉庆, 屈小勇, 吴翔, 郭永刚, 王永冈, 汪梁, 谭新, 杨鑫泽. p型TOPCon结构的隧穿氧化和钝化工艺研究[J]. 人工晶体学报, 2025, 54(1): 133-138. |
[2] | 吴蕊, 胡洋, 唐荣芬, 阳倩, 王序, 吴怡逸, 聂登攀, 王环江. MOCVD生长ZnO薄膜的气相寄生反应路径研究[J]. 人工晶体学报, 2024, 53(9): 1608-1619. |
[3] | 沈曦, 史永贵, 万玉慧, 付影, 马嘉恒, 杨浩东, 王艺佳. 腔体材料对氧化铜箔衬底上制备石墨烯的影响[J]. 人工晶体学报, 2024, 53(9): 1648-1654. |
[4] | 兰飞飞, 刘莎莎, 房诗舒, 王英民, 程红娟. 金刚石基GaN界面热阻控制研究进展[J]. 人工晶体学报, 2024, 53(6): 913-921. |
[5] | 肖宏宇, 李勇, 田昌海, 张蔚曦, 王强, 肖政国, 王应, 金慧, 鲍志刚, 周振翔. Ib型金刚石单晶生长及合成腔体温度场分布研究[J]. 人工晶体学报, 2024, 53(6): 959-966. |
[6] | 代同光, 谭新, 宋志成, 郭永刚, 袁雅静, 倪玉凤, 汪梁. TOPCon太阳电池单面沉积Poly-Si的工艺研究[J]. 人工晶体学报, 2024, 53(5): 818-823. |
[7] | 徐玉琦, 李晴雯, 钟敏. 化学气相沉积制备高c轴取向的BiOI薄膜[J]. 人工晶体学报, 2024, 53(5): 841-847. |
[8] | 张雅淋, 安晓明, 葛新岗, 姜龙, 李义锋. 大尺寸金刚石激光闪射法热导率测试研究[J]. 人工晶体学报, 2024, 53(3): 503-510. |
[9] | 郝敬林, 邓丽芬, 王凯悦, 宋惠, 江南, 西村一仁. 高温高压合成掺杂金刚石研究进展[J]. 人工晶体学报, 2024, 53(2): 194-209. |
[10] | 李传皓, 李忠辉, 彭大青, 张东国, 杨乾坤, 罗伟科. 大尺寸GaN微波材料范德瓦耳斯外延机理及应力调控研究[J]. 人工晶体学报, 2024, 53(2): 252-257. |
[11] | 罗晓航, 许光宇, 李利军, 张永康, 张亚琛, 吴海平, 安康. 自支撑金刚石厚膜三方向三点弯曲断裂韧性对比研究[J]. 人工晶体学报, 2024, 53(12): 2085-2093. |
[12] | 刘帅伟, 关春龙, 鲁云祥, 易剑, 江南, 西村一仁. 金刚石在富氧环境下的高效抛光及其材料去除机制研究[J]. 人工晶体学报, 2024, 53(12): 2094-2103. |
[13] | 马超, 熊春艳, 徐源来, 赵培. 沉积温度对MOCVD法制备固体氧化物燃料电池GDC阻挡层性质的影响[J]. 人工晶体学报, 2024, 53(12): 2197-2204. |
[14] | 安康, 许光宇, 吴海平, 张亚琛, 张永康, 李利军, 李鸿, 张旭芳, 刘峰斌, 李成明. 金刚石化学机械抛光研究进展[J]. 人工晶体学报, 2024, 53(10): 1675-1687. |
[15] | 陈沛然, 焦腾, 陈威, 党新明, 刁肇悌, 李政达, 韩宇, 于含, 董鑫. p-Si/n-Ga2O3异质结制备与特性研究[J]. 人工晶体学报, 2024, 53(1): 73-81. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 562
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 451
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||