人工晶体学报 ›› 2022, Vol. 51 ›› Issue (5): 781-800.
所属专题: 超硬材料与特殊环境晶体生长技术
刘彩云, 高伟, 殷红
收稿日期:
2022-03-18
出版日期:
2022-05-15
发布日期:
2022-06-17
通信作者:
殷 红,博士,教授。E-mail:hyin@jlu.edu.cn
作者简介:
刘彩云(1995—),女,山东省人,博士研究生。E-mail:caiyun18@mails.jlu.edu.cn; 殷 红,博士,吉林大学超硬材料国家重点实验室教授、博士生导师。主要研究方向为超硬多功能材料与器件、低维半导体材料与器件,重点研究立方氮化硼、六方氮化硼等宽禁带多功能材料的大尺寸晶体薄膜制备、性质调控,以及基于这些材料的应用开发等。承担国家自然科学基金委、教育部、吉林省以及企事业单位的多项科技项目。开展了立方氮化硼的异质外延,介质衬底无催化合成大面积六方氮化硼,低维氮化硼纳米结构的表界面与光电性质调控,气敏传感器、功率电子器件和深紫外光电探测器件的制备等工作,多年来一直积极推动氮化硼相关成果的转化。
基金资助:
LIU Caiyun, GAO Wei, YIN Hong
Received:
2022-03-18
Online:
2022-05-15
Published:
2022-06-17
摘要: 立方氮化硼(c-BN)作为闪锌矿面心立方结构的Ⅲ-Ⅴ族二元化合物,是第三代半导体中禁带宽度最大的材料,还具有高热导率、高硬度、耐高温、耐氧化、化学稳定性好、透光波长范围广、可实现p型或n型掺杂等一系列性能优点,不仅作为超硬磨料在各行业的加工领域有广泛的应用,而且作为极端电子学材料在大功率半导体和光电子器件等领域也具有潜在的应用价值,使其适用于高温、高功率、高压、高频以及强辐射等极端环境。本文综述了历年来国内外制备c-BN晶体和外延生长c-BN薄膜的发展历程,重点关注了生长技术进步和晶体质量提高的代表性成果,并对c-BN的机械性能、光学性能以及电学性能方面的研究进展进行阐述,最后对全文内容进行总结并对c-BN应用所面临的挑战进行展望。
中图分类号:
刘彩云, 高伟, 殷红. 立方氮化硼的研究进展[J]. 人工晶体学报, 2022, 51(5): 781-800.
LIU Caiyun, GAO Wei, YIN Hong. Research Progress of Cubic Boron Nitride[J]. Journal of Synthetic Crystals, 2022, 51(5): 781-800.
[1] RODRÍGUEZ-HERNÁNDEZ P, GONZÁLEZ-DIAZ M, MUÑOZ A. Electronic and structural properties of cubic BN and BP[J]. Physical Review B, Condensed Matter, 1995, 51(20): 14705-14708. [2] ZHANG W J, CHONG Y M, BELLO I, et al. Nucleation, growth and characterization of cubic boron nitride (cBN) films[J]. Journal of Physics D: Applied Physics, 2007, 40(20): 6159-6174. [3] TSAO J Y, CHOWDHURY S, HOLLIS M A, et al. Ultrawide-bandgap semiconductors: research opportunities and challenges[J]. Advanced Electronic Materials, 2018, 4(1): 1600501. [4] WENTORF R H. Cubic form of boron nitride[J]. The Journal of Chemical Physics, 1957, 26(4): 956. [5] WENTORF R H. Synthesis of the cubic form of boron nitride[J]. The Journal of Chemical Physics, 1961, 34(3): 809-812. [6] HORIUCHI S, HE L L, ONODA M, et al. Monoclinic phase of boron nitride appearing during the hexagonal cubic phase transition at high pressure and high temperature[J]. Applied Physics Letters, 1996, 68(2): 182-184. [7] BUNDY F P, WENTORF R H. Direct transformation of hexagonal boron nitride to denser forms[J]. The Journal of Chemical Physics, 1963, 38(5): 1144-1149. [8] SINGHAL S K, DER GONNA J V, NOVER G, et al. Synthesis of cubic boron nitride at reduced pressures in the presence of Co [(NH3)6]Cl3 and NH4F[J]. Diamond and Related Materials, 2005, 14(8): 1389-1394. [9] MA K. Synthesis of cubic boron nitride under relatively lower pressure and lower temperature via chemical reaction[J]. Glass Physics and Chemistry, 2020, 46(2): 181-185. [10] BINDAL M M, SINGH B P, SINGHAL S K, et al. On the choice of hexagonal boron nitride for high pressure phase transformation using the catalyst solvent process[J]. Journal of Materials Science, 1991, 26(1): 196-202. [11] LORENZ H, ORGZALL I. Influence of the initial crystallinity on the high pressure-high temperature phase transition in boron nitride[J]. Acta Materialia, 2004, 52(7): 1909-1916. [12] 杜勇慧,张波波,王少伟,等.利用球磨六角氮化硼制备立方氮化硼的研究[J].人工晶体学报,2016,45(10):2441-2445. DU Y H, ZHANG B B, WANG S W, et al. Synthesis of cubic boron nitride using ball milling hexagonal boron nitride[J]. Journal of Synthetic Crystals, 2016, 45(10): 2441-2445(in Chinese). [13] MISHIMA O, YAMAOKA S, FUKUNAGA O. Crystal growth of cubic boron nitride by temperature difference method at ~55 kbar and ~1800 ℃[J]. Journal of Applied Physics, 1987, 61(8): 2822-2825. [14] TANIGUCHI T, YAMAOKA S. Spontaneous nucleation of cubic boron nitride single crystal by temperature gradient method under high pressure[J]. Journal of Crystal Growth, 2001, 222(3): 549-557. [15] 张铁臣,杜永慧,苏作鹏.控制自发成核生长大颗粒立方氮化硼晶体[J].金刚石与磨料磨具工程,2003,23(4):23-25. ZHANG T C, DU Y H, SU Z P. Growth of large cubic boron nitride crystal by controlling spontaneous nucleation[J]. Diamond & Abrasives Engineering, 2003, 23(4): 23-25(in Chinese). [16] 郭增印.大颗粒立方氮化硼单晶合成研究[D].郑州:河南工业大学,2013. GUO Z Y. Study on synthesis of large cBN single crystal[D]. Zhengzhou: Henan University of Technology, 2013(in Chinese). [17] 苏海通,许 斌,蔡立超,等.添加籽晶对合成立方氮化硼单晶的影响[J].人工晶体学报,2015,44(10):2679-2684. SU H T, XU B, CAI L C, et al. Influence of adding seed crystals on synthesis of cubic boron nitride single crystal[J]. Journal of Synthetic Crystals, 2015, 44(10): 2679-2684(in Chinese). [18] WENTORF R H. Preparation of semiconducting cubic boron nitride[J]. The Journal of Chemical Physics, 1962, 36(8): 1990-1991. [19] MISHIMA O, ERA K, TANAKA J, et al. Ultraviolet light-emitting diode of a cubic boron nitride pn junction made at high pressure[J]. Applied Physics Letters, 1988, 53(11): 962-964. [20] TANIGUCHI T, TERAJI T, KOIZUMI S, et al. Appearance of n-type semiconducting properties of cBN single crystals grown at high pressure[J]. Japanese Journal of Applied Physics, 2002, 41(Part 2, No. 2A): L109-L111. [21] WANG C X, YANG G W, ZHANG T C, et al. High-quality heterojunction between p-type diamond single-crystal film and n-type cubic boron nitride bulk single crystal[J]. Applied Physics Letters, 2003, 83(23): 4854-4856. [22] SUMIYA H, HARANO K, ISHIDA Y. Mechanical properties of nano-polycrystalline cBN synthesized by direct conversion sintering under HPHT[J]. Diamond and Related Materials, 2014, 41: 14-19. [23] SOKOŁOWSKA A, WRONIKOWSKI M. The phase diagram (p, T, E) of boron nitride[J]. Journal of Crystal Growth, 1986, 76(2): 511-513. [24] MOSUANG T E, LOWTHER J E. Relative stability of cubic and different hexagonal forms of boron nitride[J]. Journal of Physics and Chemistry of Solids, 2002, 63(3): 363-368. [25] YU W J, LAU W M, CHAN S P, et al. Ab initio study of phase transformations in boron nitride[J]. Physical Review B, 2003, 67: 014108. [26] TOPSAKAL M, AKTÜRK E, CIRACI S. First-principles study of two- and one-dimensional honeycomb structures of boron nitride[J]. Physical Review B, 2009, 79(11): 115442. [27] AHMED R, FAZAL-E-ALEEM, HASHEMIFAR S J, et al. First principles study of structural and electronic properties of different phases of boron nitride[J]. Physica B: Condensed Matter, 2007, 400(1/2): 297-306. [28] SOKOŁOWSKI M. Deposition of wurtzite type boron nitride layers by reactive pulse plasma crystallization[J]. Journal of Crystal Growth, 1979, 46(1): 136-138. [29] ZHANG W J, MATSUMOTO S. Influence of experiment parameters on the growth of cBN films by bias-assisted direct current jet plasma chemical vapor deposition[J]. Journal of Materials Research, 2000, 15(12): 2677-2683. [30] FRIEDMANN T A, MIRKARIMI P B, MEDLIN D L, et al. Ion-assisted pulsed laser deposition of cubic boron nitride films[J]. Journal of Applied Physics, 1994, 76(5): 3088-3101. [31] CHEN G H, ZHANG X W, WANG B, et al. Optical absorption edge characteristics of cubic boron nitride thin films[J]. Applied Physics Letters, 1999, 75(1): 10-12. [32] LITVINOV D, TAYLOR C A II, CLARKE R. Semiconducting cubic boron nitride[J]. Diamond and Related Materials, 1998, 7(2/3/4/5): 360-364. [33] ZHANG X W, BOYEN H G, YIN H, et al. Microstructure of the intermediate turbostratic boron nitride layer[J]. Diamond and Related Materials, 2005, 14(9): 1474-1481. [34] KAWAMOTO S, NAKAKUMA T, TEII K, et al. Leakage current characteristics of thick cubic boron nitride films deposited on titanium[J]. Journal of Applied Physics, 2017, 122(22): 225108. [35] ZHANG F Q, GUO Y P, SONG Z Z, et al. Deposition of high quality cubic boron nitride films on nickel substrates[J]. Applied Physics Letters, 1994, 65(8): 971-973. [36] ZHU P W, ZHAO Y N, WANG B, et al. Prepared low stress cubic boron nitride film by physical vapor deposition[J]. Journal of Solid State Chemistry, 2002, 167(2): 420-424. [37] ZHANG X W, BOYEN H G, DEYNEKA N, et al. Epitaxy of cubic boron nitride on (001)-oriented diamond[J]. Nature Materials, 2003, 2(5): 312-315. [38] ZHANG W, BELLO I, LIFSHITZ Y, et al. Epitaxy on diamond by chemical vapor deposition: a route to high-quality cubic boron nitride for electronic applications[J]. Advanced Materials, 2004, 16(16): 1405-1408. [39] SOLTANI A, BARKAD H A, MATTALAH M, et al. 193 nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors[J]. Applied Physics Letters, 2008, 92(5): 053501. [40] HE B, NG T W, LO M F, et al. Surface transfer doping of cubic boron nitride films by MoO3 and tetrafluoro-tetracyanoquinodimethane (F4-TCNQ)[J]. ACS Applied Materials & Interfaces, 2015, 7(18): 9851-9857. [41] YANG H S, IWAMOTO C, YOSHIDA T. Interface engineering of cBN films deposited on silicon substrates[J]. Journal of Applied Physics, 2003, 94(2): 1248-1251. [42] YANG H S, IWAMOTO C, YOSHIDA T. Direct nucleation of cubic boron nitride on silicon substrate[J]. Diamond and Related Materials, 2007, 16(3): 642-644. [43] ZHANG X W, YIN H, BOYEN H G, et al. Effects of crystalline quality on the phase stability of cubic boron nitride thin films under medium-energy ion irradiation[J]. Diamond and Related Materials, 2005, 14(9): 1482-1488. [44] SELL K, ULRICH S, NOLD E, et al. The constitution and properties of cubic boron nitride thin films: a comparative study on the influence of bombarding ion energy[J]. Surface and Coatings Technology, 2003, 174/175: 1121-1125. [45] KIM K B, KIM S H. Characterization of boron nitride film synthesized by Helicon wave plasma-assisted chemical vapor deposition[J]. Diamond and Related Materials, 2000, 9(1): 67-72. [46] FAN Y M, ZHANG X W, YOU J B, et al. Comparison and combination of several stress relief methods for cubic boron nitride films deposited by ion beam assisted deposition[J]. Surface and Coatings Technology, 2009, 203(10/11): 1452-1456. [47] BOYEN H G, WIDMAYER P, SCHWERTBERGER D, et al. Sequential ion-induced stress relaxation and growth: a way to prepare stress-relieved thick films of cubic boron nitride[J]. Applied Physics Letters, 2000, 76(6): 709-711. [48] YAMAMOTO K, KEUNECKE M, BEWILOGUA K. Deposition of well adhering cBN films up to 2 μm thickness by B-C-N gradient layer system[J]. Thin Solid Films, 2000, 377/378: 331-339. [49] 贺 琦,潘俊德,徐 重,等.立方氮化硼薄膜的气相沉积及过渡层对其附着性能的影响[J].人工晶体学报,2005,34(2):364-368. HE Q, PAN J D, XU C, et al. Vapor phase deposition of cubic boron nitride(cBN) thin films and improvement of its adhesion by interlayers[J]. Journal of Synthetic Crystals, 2005, 34(2): 364-368(in Chinese). [50] OTAÑO-RIVERA W, MESSIER R, PILIONE L J, et al. Effect of Al additions and AlN interlayers on the stabilization of cBN sputtered thin films[J]. Diamond and Related Materials, 2004, 13(9): 1690-1696. [51] 张兴旺,游经碧,陈诺夫.立方氮化硼薄膜制备与性质研究新进展[J].无机材料学报,2007,22(3):385-390. ZHANG X W, YOU J B, CHEN N F. Recent advances in synthesis and properties of cubic boron nitride films[J]. Journal of Inorganic Materials, 2007, 22(3): 385-390(in Chinese). [52] YE J, ULRICH S, ZIEBERT C, et al. Stress reduction of cubic boron nitride films by oxygen addition[J]. Thin Solid Films, 2008, 517(3): 1151-1155. [53] KIM H S, PARK J K, LEE W S, et al. Variation of residual stress in cubic boron nitride film caused by hydrogen addition during unbalanced magnetron sputtering[J]. Thin Solid Films, 2011, 519(22): 7871-7874. [54] PARK J K, KO J S, BAIK Y J. Effect of hydrogen addition on the residual stress of B-C-N films with cubic boron nitride phase prepared by R.F. magnetron sputtering of a B4C target[J]. Surface and Coatings Technology, 2013, 215: 104-109. [55] ULRICH S, NOLD E, SELL K, et al. Constitution of thick oxygen-containing cubic boron nitride films[J]. Surface and Coatings Technology, 2006, 200(22/23): 6465-6468. [56] ULRICH S, SCHWAN J, DONNER W, et al. Knock-on subplantation-induced formation of nanocrystalline c-BN with R.F. magnetron sputtering and R.F. argon ion plating[J]. Diamond and Related Materials, 1996, 5(3/4/5): 548-551. [57] KIM I H, KIM K S, KIM S H, et al. Synthesis of cubic boron nitride films using a Helicon wave plasma and reduction of compressive stress[J]. Thin Solid Films, 1996, 290/291: 120-125. [58] FITZ C, KOLITSCH A, FUKAREK W. Stress relaxation during annealing of boron nitride films[J]. Thin Solid Films, 2001, 389(1/2): 173-179. [59] 刘彩云.高质量立方氮化硼薄膜的射频磁控溅射制备及其半导体性能探索[D].长春:吉林大学,2021. LIU C Y. Preparation of high-quality cubic boron nitride thin films by RF magnetron sputtering and their semiconducting properties[D]. Changchun: Jilin University, 2021(in Chinese). [60] MATSUMOTO S, ZHANG W J. High-rate deposition of high-quality, thick cubic boron nitride films by bias-assisted DC jet plasma chemical vapor deposition[J]. Japanese Journal of Applied Physics, 2000, 39(Part 2, No. 5B): L442-L444. [61] ZHAO Y, GAO W, XU B, et al. Thick c-BN films deposited by radio frequency magnetron sputtering in argon/nitrogen gas mixture with additional hydrogen gas[J]. Chinese Physics B, 2016, 25(10): 106801. [62] PASCALLON J, STAMBOULI V, ILIAS S, et al. Microstructure of c-BN thin films deposited on diamond films[J]. Diamond and Related Materials, 1999, 8(2/3/4/5): 325-330. [63] ZHANG W J, BELLO I, LIFSHITZ Y, et al. Thick and adherent cubic boron nitride films grown on diamond interlayers by fluorine-assisted chemical vapor deposition[J]. Applied Physics Letters, 2004, 85(8): 1344-1346. [64] LEUNG K M, LI H Q, ZOU Y S, et al. Structural analysis of cubic boron nitride films by ultraviolet Raman spectroscopy[J]. Applied Physics Letters, 2006, 88(24): 241922. [65] YIN H, ZIEMANN P. In situ Si doping of heteroepitaxially grown c-BN thin films at different temperatures[J]. RSC Advances, 2015, 5(48): 38170-38175. [66] 王金斌,张灿云,钟向丽,等.常温下脉冲激光沉积氮化硼薄膜研究[J].人工晶体学报,2002,31(5):436-439. WANG J B, ZHANG C Y, ZHONG X L, et al. Study of deposition of boron nitride films by pulsed-laser at room temperature[J]. Journal of Synthetic Crystals, 2002, 31(5): 436-439(in Chinese). [67] ZHANG C Y, ZHONG X L, WANG J B, et al. Room-temperature growth of cubic nitride boron film by RF plasma enhanced pulsed laser deposition[J]. Chemical Physics Letters, 2003, 370(3/4): 522-527. [68] 冯 健,徐 闰,汤敏燕,等.室温下金刚石薄膜上沉积立方氮化硼薄膜的研究[J].人工晶体学报,2009,38(5):1083-1087. FENG J, XU R, TANG M Y, et al. Study on the c-BN films deposited on diamond films at room temperature[J]. Journal of Synthetic Crystals, 2009, 38(5): 1083-1087(in Chinese). [69] 徐 锋,左敦稳,张旭辉,等.偏压对磁控溅射沉积立方氮化硼薄膜的影响[J].人工晶体学报,2012,41(4):853-857. XU F, ZUO D W, ZHANG X H, et al. Effect of substrate bias on the cBN film deposition by magnetron sputtering[J]. Journal of Synthetic Crystals, 2012, 41(4): 853-857(in Chinese). [70] TIAN S, XU F, YE P, et al. Deposition of cubic boron nitride films by anode layer linear ion source assisted radio frequency magnetron sputtering[J]. Thin Solid Films, 2018, 653: 13-18. [71] NOSE K, YANG H S, KAMBARA M, et al. Effects of time-dependent substrate biasing and gas composition on the nucleation of cubic boron nitride thin films[J]. Diamond and Related Materials, 2010, 19(11): 1366-1370. [72] NAKAKUMA T, TEII K, MATSUMOTO S. Lowering of the substrate bias voltage for deposition of cubic boron nitride in microwave plasma[J]. IEEE Transactions on Plasma Science, 2019, 47(2): 1205-1209. [73] 杨杭生,邱发敏,聂安民.立方氮化硼薄膜中的氧杂质[J].无机材料学报,2010,25(7):748-752. YANG H S, QIU F M, NIE A M. Oxygen impurity in cubic boron nitride thin films prepared by plasma-enhanced chemical vapor deposition[J]. Journal of Inorganic Materials, 2010, 25(7): 748-752(in Chinese). [74] CHOI Y H, HUH J Y, BAIK Y J. Nucleation retardation of cubic boron nitride films caused by the addition of oxygen in argon-cnitrogen sputtering gas[J]. Diamond and Related Materials, 2021, 120: 108694. [75] LI J, DU Y H, ZHANG M, et al. The effects of fluorination and hydrogenation on the physical properties of two-dimensional (111)-oriented cubic boron nitride nanosheets[J]. Thin Solid Films, 2021, 718: 138484. [76] DAVIS C A. A simple model for the formation of compressive stress in thin films by ion bombardment[J]. Thin Solid Films, 1993, 226(1): 30-34. [77] WEISSMANTEL C, BEWILOGUA K, DIETRICH D, et al. Structure and properties of quasi-amorphous films prepared by ion beam techniques[J]. Thin Solid Films, 1980, 72(1): 19-32. [78] REINKE S, KUHR M, KULISCH W. Mechanisms in ion induced c-BN growth[J]. Diamond and Related Materials, 1994, 3(4/5/6): 341-345. [79] LIFSHITZ Y, KASI S R, RABALAIS J W, et al. Subplantation model for film growth from hyperthermal species[J]. Physical Review B, Condensed Matter, 1990, 41(15): 10468-10480. [80] HAHN J, RICHTER F, PINTASKE R, et al. Formation of c-BN thin films under reduced ion impact[J]. Surface and Coatings Technology, 1997, 92(1/2): 129-134. [81] ROBERTSON J. Deposition mechanism of cubic boron nitride[J]. Diamond and Related Materials, 1996, 5(3/4/5): 519-524. [82] LU M, BOUSETTA A, BENSAOULA A, et al. Electrical properties of boron nitride thin films grown by neutralized nitrogen ion assisted vapor deposition[J]. Applied Physics Letters, 1996, 68(5): 622-624. [83] SZMIDT J, WERBOWY A, JARZEBOWSKI L, et al. Effect of annealing on the structure and electrical properties of sulfur-doped amorphous c-BN layers[J]. Journal of Materials Science, 1996, 31(10): 2609-2613. [84] NOSE K, OBA H, YOSHIDA T. Electric conductivity of boron nitride thin films enhanced by in situ doping of zinc[J]. Applied Physics Letters, 2006, 89(11): 112124. [85] YIN H, ZIEMANN P. Multiple delta doping of single crystal cubic boron nitride films heteroepitaxially grown on (001)diamonds[J]. Applied Physics Letters, 2014, 104(25): 252111. [86] HAQUE A, NARAYAN J. Tunable n-type conductivity and transport properties of cubic boron nitride via carbon doping[J]. ACS Applied Electronic Materials, 2021, 3(3): 1359-1367. [87] 桂阳海,王海燕,马甜甜,等.立方氮化硼表面刺状物的生长及机理研究[J].人工晶体学报,2016,45(3):799-802. GUI Y H, WANG H Y, MA T T, et al. Growth and mechanism of the spines on the surface of cBN abrasives[J]. Journal of Synthetic Crystals, 2016, 45(3): 799-802(in Chinese). [88] MATHIYALAGAN S, ROSSETTI M, BJÖRKLUND S, et al. High velocity air fuel (HVAF) spraying of nickel phosphorus-coated cubic-boron nitride powders for realizing high-performance tribological coatings[J]. Journal of Materials Research and Technology, 2022, 18: 59-74. [89] LIEW W Y H, YUAN S, NGOI B K A. Evaluation of machining performance of STAVAX with PCBN tools[J]. The International Journal of Advanced Manufacturing Technology, 2004, 23(1/2): 11-19. [90] WENTORF R H, DEVRIES R C, BUNDY F P. Sintered superhard materials[J]. Science, 1980, 208(4446): 873-880. [91] HALL E O. The deformation and ageing of mild steel: iii discussion of results[J]. Proceedings of the Physical Society Section B, 1951, 64(9): 747-753. [92] PETCH N J. The cleavage strength of polycrystals[J]. J Iron Steel InstInst, 1953, 174(19): 25-28. [93] DUBROVINSKAIA N, SOLOZHENKO V L, MIYAJIMA N, et al. Superhard nanocomposite of dense polymorphs of boron nitride: noncarbon material has reached diamond hardness[J]. Applied Physics Letters, 2007, 90(10): 101912. [94] SOLOZHENKO V L, KURAKEVYCH O O, LE GODEC Y. Creation of nanostuctures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride[J]. Advanced Materials, 2012, 24(12): 1540-1544. [95] TIAN Y, XU B, YU D, et al. Ultrahard nanotwinned cubic boron nitride[J]. Nature, 2013, 493(7432): 385-388. [96] LIU G D, KOU Z L, YAN X Z, et al. Submicron cubic boron nitride as hard as diamond[J]. Applied Physics Letters, 2015, 106(12): 121901. [97] RICHTER F, HERRMANN M, MOLNAR F, et al. Substrate influence in Young's modulus determination of thin films by indentation methods: cubic boron nitride as an example[J]. Surface and Coatings Technology, 2006, 201(6): 3577-3587. [98] DEYNEKA-DUPRIEZ N, HERR U, FECHT H J, et al. Mechanical and tribological properties of epitaxial cubic boron nitride thin films grown on diamond[J]. Advanced Engineering Materials, 2008, 10(5): 482-487. [99] ZOYA Z A, KRISHNAMURTHY R. The performance of cBN tools in the machining of titanium alloys[J]. Journal of Materials Processing Technology, 2000, 100(1/2/3): 80-86. [100] DOGRA M, SHARMA V S, SACHDEVA A, et al. Tool wear, chip formation and workpiece surface issues in cBN hard turning: a review[J]. International Journal of Precision Engineering and Manufacturing, 2010, 11(2): 341-358. [101] OKADA M, HOSOKAWA A, TANAKA R, et al. Cutting performance of PVD-coated carbide and cBN tools in hardmilling[J]. International Journal of Machine Tools and Manufacture, 2011, 51(2): 127-132. [102] CHRENKO R M. Ultraviolet and infrared spectra of cubic boron nitride[J]. Solid State Communications, 1974, 14(6): 511-515. [103] MIYATA N, MORIKI K, MISHIMA O, et al. Optical constants of cubic boron nitride[J]. Physical Review B, Condensed Matter, 1989, 40(17): 12028-12029. [104] EVANS D A, MCGLYNN A G, TOWLSON B M, et al. Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy[J]. Journal of Physics: Condensed Matter, 2008, 20(7): 075233. [105] ZHANG J, AN L L, ZHANG B, et al. Two dimensional cubic boron nitride nanosheets converted from hexagonal boron nitride bilayers: electrical conductivity, magnetism and visible absorption properties[J]. Chinese Journal of Physics, 2020, 66: 534-542. [106] REN C, CHEN Z G, JIA G, et al. Absorption related to electrochromism in cubic boron nitride single crystals[J]. Chinese Physics Letters, 2009, 26(6): 067804. [107] CHEN Z G, JIA G, DOU Q P, et al. Studies of the second-order nonlinear optical properties of cubic boron nitride[J]. Applied Physics B, 2007, 88(4): 569-573. [108] XIONG X C, JIANG C, XIE Q. Broadband transmission properties of cBN-Si interfaces[J]. IEEE Photonics Journal, 2021, 13(3): 1-10. [109] SHIPILO V B, SHISHONOK E M, OLEKHNOVICH A I, et al. Influence of high pressure on cathodoluminescence of cubic boron nitride[J]. Physica Status Solidi (a), 1988, 108(1): 431-436. [110] ERASMUS R M, COMINS J D, FISH M L. Raman and photoluminescence spectra of indented cubic boron nitride and polycrystalline cubic boron nitride[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 600-604. [111] SHISHONOK E M, STEEDS J W. Near-threshold creation of optical centres in electron irradiated cubic boron nitride[J]. Diamond and Related Materials, 2002, 11(10): 1774-1780. [112] TAYLOR C A, BROWN S W, SUBRAMANIAM V, et al. Observation of near-band-gap luminescence from boron nitride films[J]. Applied Physics Letters, 1994, 65(10): 1251-1253. [113] ZHANG W J, KANDA H, MATSUMOTO S. Cathodoluminescence of cubic boron nitride films deposited by chemical vapor deposition[J]. Applied Physics Letters, 2002, 81(18): 3356-3358. [114] YU J, ZHENG Z, ONG H C, et al. Thermal stability of cubic boron nitride films deposited by chemical vapor deposition[J]. The Journal of Physical Chemistry B, 2006, 110(42): 21073-21076. [115] SHISHONOK E M, PHILIPP A R, SHISHONOK N A, et al. Luminescence in cubic boron nitride doped by rare-earth impurity[J]. Physica Status Solidi (b), 2005, 242(8): 1700-1704. [116] SHISHONOK E M, TANIGUCHI T, SEKIGUCHI T. Luminescence investigations of cubic boron nitride doped with beryllium[J]. Physics of the Solid State, 2007, 49(10): 1884-1890. [117] SHISHONOK E M, LEONCHIK S V, STEEDS J W, et al. Strong ultraviolet luminescence from cerium- and gadolinium-doped cubic boron nitride[J]. Diamond and Related Materials, 2007, 16(8): 1602-1607. [118] SHISHONOK E M, LEONCHIK S V, STEEDS J W. Luminescence from europium, europium-chromium, erbium, samarium and terbium-activated powder, ceramic and polycrystalline cubic boron nitride[J]. Physica Status Solidi (b), 2007, 244(6): 2172-2179. [119] VETTER U, TANIGUCHI T, WAHL U, et al. Lanthanide doped cubic boron nitride[J]. MRS Proceedings, 2002, 744(1): M8.38. [120] ORELLANA W, CHACHAM H. Atomic geometry and energetics of vacancies and antisites in cubic boron nitride[J]. Applied Physics Letters, 1999, 74(20): 2984-2986. [121] TURIANSKY M E, WICKRAMARATNE D, LYONS J L, et al. Prospects for n-type conductivity in cubic boron nitride[J]. Applied Physics Letters, 2021, 119(16): 162105. [122] YIN H, BOYEN H G, ZIEMANN P, et al. Purity of epitaxial cubic boron nitride films on (001) diamond: a prerequisite for their doping[J]. Diamond and Related Materials, 2008, 17(3): 276-282. [123] BIAN G D, YUAN H, ZHANG N, et al. Neutral oxygen-vacancy defect in cubic boron nitride: a plausible qubit candidate[J]. Applied Physics Letters, 2019, 114(10): 102105. [124] 何 斌,陈光华,郜志华,等.立方氮化硼薄膜注入Be的Hall效应研究[J].人工晶体学报,2008,37(2):504-506. HE B, CHEN G H, GAO Z H, et al. Hall effect of be-implanted cubic boron nitride thin films[J]. Journal of Synthetic Crystals, 2008, 37(2): 504-506(in Chinese). [125] SUGINO T, TANIOKA K, KAWASAKI S, et al. Electron emission from nanocrystalline boron nitride films synthesized by plasma-assisted chemical vapor deposition[J]. Diamond and Related Materials, 1998, 7(2/3/4/5): 632-635. [126] BUSTA H H, PRYOR R W. Electron emission from a laser ablated and laser annealed BN thin film emitter[J]. Journal of Applied Physics, 1997, 82(10): 5148-5153. [127] YIN H, PONGRAC I, ZIEMANN P. Electronic transport in heavily Si doped cubic boron nitride films epitaxially grown on diamond(001)[J]. Journal of Applied Physics, 2008, 104(2): 023703. [128] KOJIMA K, NOSE K, KAMBARA M, et al. Effects of magnesium doping on growth and electric conductivity of nanocrystalline cubic boron nitride thin films[J]. Journal of Physics D: Applied Physics, 2009, 42(5): 055304. [129] TANIGUCHI T, KOIZUMI S, WATANABE K, et al. High pressure synthesis of UV-light emitting cubic boron nitride single crystals[J]. Diamond and Related Materials, 2003, 12(3/4/5/6/7): 1098-1102. [130] HIRAMA K, TANIYASU Y, YAMAMOTO H, et al. Control of n-type electrical conductivity for cubic boron nitride (c-BN) epitaxial layers by Si doping[J]. Applied Physics Letters, 2020, 116(16): 162104. [131] MISHIMA O, TANAKA J, YAMAOKA S, et al. High-temperature cubic boron nitride p-n junction diode made at high pressure[J]. Science, 1987, 238(4824): 181-183. [132] LI Y B, ZHONG J W, ZHOU L M, et al. Deep ultraviolet photodetector based on sulphur-doped cubic boron nitride thin film[J]. Materials Science Forum, 2016, 879: 1117-1122. |
[1] | 徐娅蓉, 赵九州, 赵成兄, 梁毅农, 孙赞. 基于胡椒酸/4,4′-联吡啶的Zn配位聚合物的合成、结构及Hirshfeld分析[J]. 人工晶体学报, 2025, 54(1): 115-120. |
[2] | 许万里, 甘云海, 李悦文, 李彬, 郑有炓, 张荣, 修向前. 高均匀性6英寸GaN厚膜的高速率HVPE生长研究[J]. 人工晶体学报, 2025, 54(1): 11-16. |
[3] | 陶祖才, 王强, 肖雄, 宋宝林, 张文强, 刘双全, 黄先超, 丁雨憧, 徐扬. 基于MPPC阵列的核辐射成像探测器性能影响因素研究[J]. 人工晶体学报, 2025, 54(1): 40-48. |
[4] | 王治强, 张齐, 梁颖, 王文欣, 陈琦. 磁场辅助法快捷制备Fe3O4@C光子晶体柔性复合薄膜[J]. 人工晶体学报, 2025, 54(1): 49-58. |
[5] | 王云杰, 和志豪, 丁家福, 苏欣. X2(PO4)2(X=Ba、Pb)和XPO4(X=Y、Bi)中阳离子对结构框架影响及双折射率来源研究[J]. 人工晶体学报, 2025, 54(1): 85-94. |
[6] | 丁家福, 和志豪, 王云杰, 苏欣. 通过硫代调控Ga、In、Tl磷酸盐光学性质的第一性原理研究[J]. 人工晶体学报, 2025, 54(1): 95-106. |
[7] | 李苗, 郑易萌, 孙已婷, 毛玉玲, 朱百丽, 崔术新. 基于4,5-咪唑二羧酸配体镉配位化合物的制备及性能[J]. 人工晶体学报, 2025, 54(1): 121-125. |
[8] | 王馨莹, 乔得聪, 潘会宾, 高霞, 卢久富. 混合配体构筑的Cd(Ⅱ)基荧光传感有机骨架材料及其性能研究[J]. 人工晶体学报, 2025, 54(1): 126-132. |
[9] | 储冬冬, 杨志华, 潘世烈. 数据驱动的新型非线性光学材料理论设计研究进展[J]. 人工晶体学报, 2024, 53(9): 1475-1493. |
[10] | 窦仁勤, 刘耀, 罗建乔, 王小飞, 刘文鹏, 张庆礼. Nd∶GdYAG激光晶体的光谱分析及热学性能研究[J]. 人工晶体学报, 2024, 53(9): 1504-1511. |
[11] | 伍秋林, 冯新凯, 陈怀熹, 陈家颖, 马翠坪, 梁万国. 基于紧凑型Nd∶YAG/PPMgLN模组的561 nm基模激光器[J]. 人工晶体学报, 2024, 53(9): 1512-1518. |
[12] | 王洪帅, 王蕾, 宋舒虹, 陶绪堂. 基于原位原子力显微镜的巴洛沙韦酯单晶溶解机制研究[J]. 人工晶体学报, 2024, 53(9): 1519-1527. |
[13] | 郑权, 刘学超, 王浩, 朱新峰, 潘秀红, 陈锟, 邓伟杰, 汤美波, 徐浩, 吴鸿辉, 金敏. 铝掺杂对硒化铟晶体结构与性能的影响[J]. 人工晶体学报, 2024, 53(9): 1528-1535. |
[14] | 覃佐燕, 金雷, 李文良, 谭俊, 何广泽, 武红磊. PVT法AlN晶体生长模式调控研究[J]. 人工晶体学报, 2024, 53(9): 1542-1549. |
[15] | 焦思慧, 吴红萍, 俞洪伟. CsBa2ScB8O16:首例结构中同时含有零维[B3O6]基元和一维B—O链的稀土硼酸盐[J]. 人工晶体学报, 2024, 53(9): 1550-1559. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 277
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 347
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||