人工晶体学报 ›› 2022, Vol. 51 ›› Issue (5): 814-829.
所属专题: 超硬材料与特殊环境晶体生长技术
牟恋希1, 曾翰森1, 朱肖华1, 屠菊萍1, 刘金龙1,2, 陈良贤1, 魏俊俊1,2, 李成明1,2, 欧阳晓平3
收稿日期:
2022-03-02
出版日期:
2022-05-15
发布日期:
2022-06-17
通信作者:
刘金龙,博士,副研究员。E-mail:liujinlong@ustb.edu.cn;李成明,博士,教授。E-mail:chengmli@mater.ustb.edu.cn
作者简介:
牟恋希(1999—),女,青海省人,硕士研究生。E-mail:mulianxi2021@163.com; 刘金龙,博士,北京科技大学新材料技术研究院副研究员、硕士生导师。兼任《人工晶体学报》《表面技术》《金刚石与磨料磨具工程》等期刊青年编委。主要研究方向为功能碳材料制备与应用研究。承担科技部、国家自然科学基金委、国防科工局等部门国家级项目。开展了包括高质量单晶金刚石生长、探测器应用、金刚石微波功率器件、多晶金刚石微波窗口、X射线窗口等研究工作。荣获教育部技术发明一等奖、北京市科学技术三等奖。李成明,北京科技大学教授,主要从事CVD金刚石膜与CVD金刚石单晶制备及其功能应用研究。先后主持和参与国家重大专项(子项目)、国家重点研发计划、国际政府间合作项目欧洲地平线计划2020、国家“863”计划、国家“973”计划、国家自然科学基金等项目30多项。发表学术论文300余篇,授权国家发明专利70余项。主持研究的金刚石扩热板应用于北斗卫星系列,获得2019年教育部技术发明一等奖。获得其他省部级奖3项。
基金资助:
MU Lianxi1, ZENG Hansen1, ZHU Xiaohua1, TU Juping1, LIU Jinlong1,2, CHEN Liangxian1, WEI Junjun1,2, LI Chengming1,2, OUYANG Xiaoping3
Received:
2022-03-02
Online:
2022-05-15
Published:
2022-06-17
摘要: 金刚石探测器具有体积小、抗辐照能力强、时间响应快等优点,在核辐射领域应用优势显著。早期金刚石核辐射探测器均采用天然金刚石材料,化学气相沉积(chemical vapor deposition, CVD)金刚石人工合成技术的进步,极大地促进了金刚石核辐射探测器的发展与应用。本文从CVD人造金刚石材料入手,分析了制约金刚石探测器性能的杂质与缺陷、CVD金刚石的合成工艺、探测器级金刚石中杂质与缺陷的表征方法,并基于载流子迁移率与寿命乘积、探测器的电荷收集效率等性能指标,总结了CVD金刚石中的杂质与缺陷对探测器性能的影响规律,介绍了国外金刚石核辐射探测器的应用现状并展望了国内金刚石核辐射探测器的发展前景。
中图分类号:
牟恋希, 曾翰森, 朱肖华, 屠菊萍, 刘金龙, 陈良贤, 魏俊俊, 李成明, 欧阳晓平. CVD人造金刚石核辐射探测器研究进展[J]. 人工晶体学报, 2022, 51(5): 814-829.
MU Lianxi, ZENG Hansen, ZHU Xiaohua, TU Juping, LIU Jinlong, CHEN Liangxian, WEI Junjun, LI Chengming, OUYANG Xiaoping. Research Progress of Nuclear Radiation Detectors with CVD Synthetic Diamond[J]. Journal of Synthetic Crystals, 2022, 51(5): 814-829.
[1] BASSI G, BOSISIO L, CRISTAUDO P, et al. Calibration of diamond detectors for dosimetry in beam-loss monitoring[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1004: 165383. [2] ZHANG M L, XIA Y B, WANG L J, et al. Response of chemical vapor deposition diamond detectors to X-ray[J]. Solid State Communications, 2004, 130(6): 425-428. [3] SATO Y, SHIMAOKA T, KANEKO J H, et al. Radiation hardness of a single crystal CVD diamond detector for MeV energy protons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784: 147-150. [4] BALMER R S, BRANDON J R, CLEWES S L, et al. Chemical vapour deposition synthetic diamond: materials, technology and applications[J]. Journal of Physics: Condensed Matter, 2009, 21(36): 364221. [5] CANALI C, GATTI E, KOZLOV S F, et al. Electrical properties and performances of natural diamond nuclear radiation detectors[J]. Nuclear Instruments and Methods, 1979, 160(1): 73-77. [6] KIM M, SEO J H, SINGISETTI U, et al. Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond[J]. Journal of Materials Chemistry C, 2017, 5(33): 8338-8354. [7] ZHANG Z F, LIN C N, YANG X, et al. Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array[J]. Carbon, 2021, 173: 427-432. [8] HEARNE S M, TRAJKOV E, JAMIESON D N, et al. The role of charge trapping at grain boundaries on charge transport in polycrystalline chemical vapor deposited diamond based detectors[J]. Journal of Applied Physics, 2006, 99(11): 113703. [9] LIU L Y, OUYANG X P, ZHANG J F, et al. Polycrystalline CVD diamond detector: fast response and high sensitivity with large area[J]. AIP Advances, 2014, 4(1): 017114. [10] ICHIKAWA K, SHIMAOKA T, KATO Y, et al. Dislocations in chemical vapor deposition diamond layer detected by confocal Raman imaging[J]. Journal of Applied Physics, 2020, 128(15): 155302. [11] MOHAPATRA S, SAHU P K, RATH S, et al. Defect characterization and numerical modelling of single-crystal ultra-pure intrinsic diamond[J]. Diamond and Related Materials, 2020, 106: 107822. [12] TRAN T T, KIANINIA M, BRAY K, et al. Nanodiamonds with photostable, sub-gigahertz linewidth quantum emitters[J]. APL Photonics, 2017, 2(11): 116103. [13] MÜLLER T, HEPP C, PINGAULT B, et al. Optical signatures of silicon-vacancy spins in diamond[J]. Nature Communications, 2014, 5: 3328. [14] IWASAKI T, ISHIBASHI F, MIYAMOTO Y, et al. A germanium-vacancy single photon source in diamond[EB/OL]. 2015: arXiv: 1503.04938[cond-mat.mtrl-sci]. https://arxiv.org/abs/1503.04938 [15] 韦 媚.位错影响下的红外探测器HgCdTe材料载流子输运特性研究[D].西安:西安电子科技大学,2020. WEI M. Study on carrier transport characteristics of HgCdTe material for infrared detector under the influence of dislocation[D]. Xi'an: Xi'an University of Electronic Science and Technology, 2020(in Chinese). [16] WANG W H, WANG Y, SHU G Y, et al. Recent progress on controlling dislocation density and behavior during heteroepitaxial single crystal diamond growth[J]. New Carbon Materials, 2021, 36(6): 1034-1045. [17] KOIZUMI S, UMEZAWA H, PERNOT J, et al. Power electronics device applications of diamond semiconductors[M]. Oxford: Elsevier, 2018. [18] 刘金龙,安 康,陈良贤,等.CVD金刚石自支撑膜的研究进展[J].表面技术,2018,47(4):1-10. LIU J L, AN K, CHEN L X, et al. Research progress of freestanding CVD diamond films[J]. Surface Technology, 2018, 47(4): 1-10(in Chinese). [19] HIRD J R, FIELD J E. Diamond polishing[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2004, 460(2052): 3547-3568. [20] ACHARD J, TALLAIRE A, MILLE V, et al. Improvement of dislocation density in thick CVD single crystal diamond films by coupling H2/O2 plasma etching and chemo-mechanical or ICP treatment of HPHT substrates[J]. Physica Status Solidi (a), 2014, 211(10): 2264-2267. [21] YAMAMOTO M, TERAJI T, ITO T. Improvement in the crystalline quality of homoepitaxial diamond films by oxygen plasma etching of mirror-polished diamond substrates[J]. Journal of Crystal Growth, 2005, 285(1/2): 130-136. [22] MUCHNIKOV A B, VIKHAREV A L, BUTLER J E, et al. Homoepitaxial growth of CVD diamond after ICP pretreatment[J]. Physica Status Solidi (a), 2015, 212(11): 2572-2577. [23] HICKS M L, PAKPOUR-TABRIZI A C, ZUERBIG V, et al. Optimizing reactive ion etching to remove sub-surface polishing damage on diamond[J]. Journal of Applied Physics, 2019, 125(24): 244502. [24] SILVA F, ACHARD J, BRINZA O, et al. High quality, large surface area, homoepitaxial MPACVD diamond growth[J]. Diamond and Related Materials, 2009, 18(5/6/7/8): 683-697. [25] LANGER J L, CIMALLA V, PRESCHER M, et al. Quality assessment of in situ plasma-etched diamond surfaces for chemical vapor deposition overgrowth[J]. Physica Status Solidi (a), 2021, 218(11): 2100035. [26] TAVARES C, KOIZUMI S, KANDA H. Effects of RIE treatments for{111}diamond substrates on the growth of P-doped diamond thin films[J]. Physica Status Solidi (a), 2005, 202(11): 2129-2133. [27] TERAJI T, TANIGUCHI T, KOIZUMI S, et al. Chemical vapor deposition of 12C isotopically enriched polycrystalline diamond[J]. Japanese Journal of Applied Physics, 2012, 51: 090104. [28] LIU J L, LIN L Z, ZHAO Y, et al. Homo-epitaxial growth of single crystal diamond in the purified environment by active O atoms[J]. Vacuum, 2018, 155: 391-397. [29] GUO Y Z, LIU J L, LIU J W, et al. Comparison of α particle detectors based on single-crystal diamond films grown in two types of gas atmospheres by microwave plasma-assisted chemical vapor deposition[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(5): 703-712. [30] NISTOR S V, STEFAN M, RALCHENKO V, et al. Nitrogen and hydrogen in thick diamond films grown by microwave plasma enhanced chemical vapor deposition at variable H2 flow rates[J]. Journal of Applied Physics, 2000, 87(12): 8741-8746. [31] ZHAO Y, GUO Y Z, LIN L Z, et al. Comparison of the quality of single-crystal diamonds grown on two types of seed substrates by MPCVD[J]. Journal of Crystal Growth, 2018, 491: 89-96. [32] SECROUN A, BRINZA O, TARDIEU A, et al. Dislocation imaging for electronics application crystal selection[J]. Physica Status Solidi (a), 2007, 204(12): 4298-4304. [33] SEIBT M, KHALIL R, KVEDER V, et al. Electronic states at dislocations and metal silicide precipitates incrystalline silicon and their role insolar cell materials[J]. Applied Physics A, 2009, 96(1): 235-253. [34] BERDERMANN E, POMORSKI M, DE BOER W, et al. Diamond detectors for hadron physics research[J]. Diamond and Related Materials, 2010, 19(5/6): 358-367. [35] GALBIATI A, LYNN S, OLIVER K, et al. Performance of monocrystalline diamond radiation detectors fabricated using TiW, Cr/Au and a novel ohmic DLC/Pt/Au electrical contact[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 1863-1874. [36] 刘佳伟.高性能金刚石辐照探测器的研究与应用[D].武汉:武汉大学,2019. LIU J W. Research and application of high performance diamond radiation detectors[D]. Wuhan: Wuhan University, 2019(in Chinese). [37] LIU J W, CHANG J F, ZHANG J Z, et al. Design, fabrication and testing of CVD diamond detectors with high performance[J]. AIP Advances, 2019, 9(4): 045205. [38] SATO Y, MURAKAMI H, SHIMAOKA T, et al. Single-crystal CVD diamond detector for high-resolution particle spectrometry[J]. Europhysics Letters, 2014, 108(4): 42001. [39] 陆荣荣,裘惠源,朱德彰.离子束诱导电荷显微术的现状与发展趋势[J].核技术,2002,25(8):591-596. LU R R, QIU H Y, ZHU D Z. The status and new trends of ion beam induced charge technique[J]. Nuclear Techniques, 2002, 25(8): 591-596(in Chinese). [40] SHIMAOKA T, KOIZUMI S, TANAKA M M. Diamond photovoltaic radiation sensor using pn junction[J]. Applied Physics Letters, 2018, 113(9): 093504. [41] KASAP S, RAMASWAMI K O, KABIR M Z, et al. Corrections to the Hecht collection efficiency in photoconductive detectors under large signals: non-uniform electric field due to drifting and trapped unipolar carriers[J]. Journal of Physics D: Applied Physics, 2019, 52(13): 135104. [42] LIOLIOU G, LEFEUVRE G, BARNETT A M. High temperature (≤160 ℃) X-ray and β-particle diamond detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 991: 165025. [43] GALLIN-MARTEL M L, CURTONI S, MARCATILI S, et al. X-ray beam induced current analysis of CVD diamond detectors in the perspective of a beam tagging hodoscope development for hadrontherapy on-line monitoring[J]. Diamond and Related Materials, 2021, 112: 108236. [44] CAZZANIGA C, KASTRIOTOU M, GARCÍA ALÍA R, et al. Measurements of ultra-high energy lead ions using silicon and diamond detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 985: 164671. [45] KOBAYASHI M I, ANGELONE M, YOSHIHASHI S, et al. Thermal neutron measurement by single crystal CVD diamond detector applied with the pulse shape discrimination during deuterium plasma experiment in LHD[J]. Fusion Engineering and Design, 2020, 161: 112063. [46] PASSERI M, POMPILI F, ESPOSITO B, et al. Assessment of single crystal diamond detector radiation hardness to 14 MeV neutrons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1010: 165574. [47] ABDEL-RAHMAN M A E, LOHSTROH A, BRYANT P. Alpha spectroscopy and X-ray induced photocurrent studies of a SC CVD diamond detector fabricated with PLD contacts[J]. Radiation Physics and Chemistry, 2019, 164: 108357. [48] SU K, REN Z Y, ZHANG J F, et al. High performance hydrogen/oxygen terminated CVD single crystal diamond radiation detector[J]. Applied Physics Letters, 2020, 116(9): 092104. [49] 黄广伟,吴 坤,陈 晔,等.单晶金刚石探测器对14MeV单能中子的响应[J].物理学报,2021,70(20):202901. HUANG G W, WU K, CHEN Y, et al. Response to 14 MeV neutrons for single-crystal diamond detectors[J]. Acta Physica Sinica, 2021, 70(20): 202901(in Chinese). [50] LIU Y H, LOH C W, ZHANG J L, et al. Proton irradiation tests of single crystal diamond detector at CIAE[J]. Nuclear Materials and Energy, 2020, 22: 100735. [51] POMORSKI M, CAYLAR B, BERGONZO P. Super-thin single crystal diamond membrane radiation detectors[J]. Applied Physics Letters, 2013, 103(11): 112106. [52] LOHSTROH A, SELLIN P J, WANG S G, et al. Effect of dislocations on charge carrier mobility-lifetime product in synthetic single crystal diamond[J]. Applied Physics Letters, 2007, 90(10): 102111. [53] TARUN A, LEE S J, YAP C M, et al. Impact of impurities and crystal defects on the performance of CVD diamond detectors[J]. Diamond and Related Materials, 2016, 63: 169-174. [54] SU K, HE Q, ZHANG J F, et al. Device performance of chemical vapor deposition monocrystal diamond radiation detectors correlated with the bulk diamond properties[J]. Journal of Physics D: Applied Physics, 2021, 54(14): 145105. [55] STEHL C, FISCHER M, GSELL S, et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications[J]. Applied Physics Letters, 2013, 103(15): 151905. [56] CHERNYKH S V, CHERNYKH A V, TARELKIN S A, et al. High-pressure high-temperature single-crystal diamond type Ⅱa characterization for particle detectors[J]. Physica Status Solidi (a), 2020, 217(8): 1900888. [57] SATO S I, MAKINO T, OHSHIMA T, et al. Transient current induced in thin film diamonds by swift heavy ions[J]. Diamond and Related Materials, 2017, 75: 161-168. [58] TSUBOTA M, KANEKO J H, MIYAZAKI D, et al. High-temperature characteristics of charge collection efficiency using single CVD diamond detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 789: 50-56. [59] VARTSKY D, GOLDBERG M, EISEN Y, et al. Radiation induced polarization in CdTe detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1988, 263(2/3): 457-462. [60] HOLMES J M, DUTTA M, KOECK F A, et al. Neutralizing the polarization effect of diamond diode detectors using periodic forward bias pulses[J]. Diamond and Related Materials, 2019, 94: 162-165. [61] MANFREDOTTI C, VITTONE E, FIZZOTTI F, et al. Effects of light on the ‘primed' state of CVD diamond nuclear detectors[J]. Diamond and Related Materials, 2002, 11(3/4/5/6): 446-450. [62] RAMOS M R, CRNJAC A, COSIC D, et al. Ion microprobe study of the polarization quenching techniques in single crystal diamond radiation detectors[J]. Materials, 2022, 15(1): 388. [63] ZOU M N, BOHON J, SMEDLEY J, et al. Proton radiation effects on carrier transport in diamond radiation detectors[J]. AIP Advances, 2020, 10(2): 025004. [64] STEINEGGER P, DRESSLER R, EICHLER R, et al. Diamond detectors for high-temperature transactinide chemistry experiments[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 850: 61-67. [65] KUMAR A, KUMAR A, TOPKAR A, et al. Prototyping and performance study of a single crystal diamond detector for operation at high temperatures[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 858: 12-17. [66] CRNJAC A, SKUKAN N, PROVATAS G, et al. Electronic properties of a synthetic single-crystal diamond exposed to high temperature and high radiation[J]. Materials, 2020, 13(11): 2473. [67] CRNJAC A, RAMOS M R, SKUKAN N, et al. Charge transport in single crystal CVD diamond studied at high temperatures[J]. Journal of Physics D: Applied Physics, 2021, 54(46): 465103. [68] OGASAWARA K, BROILES T W, COULTER K E, et al. Single crystal chemical vapor deposit diamond detector for energetic plasma measurement in space[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 777: 131-137. [69] DUEÑAS J A, MORA J M, TRAEGER M, et al. Time response of 50 μm thickness single crystal diamond detectors[J]. Diamond and Related Materials, 2015, 55: 144-148. [70] BOSSINI E, MINAFRA N. Diamond detectors for timing measurements in high energy physics[J]. Frontiers in Physics, 2020, 8: 248. [71] TRISCHUK W, et al. Diamond particle detectors for high energy physics[J]. Nuclear and Particle Physics Proceedings, 2016, 273/274/275: 1023-1028. [72] POMPILI F, ESPOSITO B, MAROCCO D, et al. Radiation and thermal stress test on diamond detectors for the radial neutron camera of ITER[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 936: 62-64. [73] 刘金龙,朱肖华,郭彦召,等.金刚石探测器材料研制与中子探测性能研究[J].真空电子技术,2021(5):46-53+72. LIU J L, ZHU X H, GUO Y Z, et al. Material development and neutron detection performance of diamond detector[J]. Vacuum Electronics, 2021(5): 46-53+72(in Chinese). [74] CURTONI S, GALLIN-MARTEL M L, MARCATILI S, et al. Performance of CVD diamond detectors for single ion beam-tagging applications in hadrontherapy monitoring[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1015: 165757. |
[1] | 赵青松, 牛晓东, 顾小英, 狄聚青. 大尺寸超高纯锗单晶的生长和性能研究[J]. 人工晶体学报, 2025, 54(1): 34-39. |
[2] | 刘帅, 熊慧凡, 杨霞, 杨德仁, 皮孝东, 宋立辉. 电子辐照对4H-SiC MOS材料缺陷的影响[J]. 人工晶体学报, 2024, 53(9): 1536-1541. |
[3] | 唐华著, 肖清泉, 付莎莎, 谢泉. 以Spiro-OMeTAD作为空穴传输层的ZnS/SnS太阳能电池模拟研究[J]. 人工晶体学报, 2024, 53(8): 1394-1408. |
[4] | 倪浩然, 陈亚, 王黎光, 芮阳, 赵泽慧, 马成, 刘洁, 张兴茂, 赵延祥, 杨少林. 热屏结构对300 mm半导体级单晶硅生长过程温度分布影响的数值模拟[J]. 人工晶体学报, 2024, 53(7): 1196-1211. |
[5] | 兰飞飞, 刘莎莎, 房诗舒, 王英民, 程红娟. 金刚石基GaN界面热阻控制研究进展[J]. 人工晶体学报, 2024, 53(6): 913-921. |
[6] | 肖宏宇, 李勇, 田昌海, 张蔚曦, 王强, 肖政国, 王应, 金慧, 鲍志刚, 周振翔. Ib型金刚石单晶生长及合成腔体温度场分布研究[J]. 人工晶体学报, 2024, 53(6): 959-966. |
[7] | 舒敏, 梁俊辉, 陈达, 陈招, 秦来顺. 基于水热合成法制备的MoO3-x纳米槽SERS基底的特性研究[J]. 人工晶体学报, 2024, 53(6): 1061-1068. |
[8] | 鲍爱达, 马永强, 郭鑫. GaSe/ZnS异质结的结构和界面性质的第一性原理研究[J]. 人工晶体学报, 2024, 53(4): 669-675. |
[9] | 刘宏德, 王维维, 张中正, 郑大怀, 刘士国, 孔勇发, 许京军. 铌酸锂晶体的缺陷结构[J]. 人工晶体学报, 2024, 53(3): 355-371. |
[10] | 张雅淋, 安晓明, 葛新岗, 姜龙, 李义锋. 大尺寸金刚石激光闪射法热导率测试研究[J]. 人工晶体学报, 2024, 53(3): 503-510. |
[11] | 郝敬林, 邓丽芬, 王凯悦, 宋惠, 江南, 西村一仁. 高温高压合成掺杂金刚石研究进展[J]. 人工晶体学报, 2024, 53(2): 194-209. |
[12] | 郭钰, 刘春俊, 张新河, 沈鹏远, 张博, 娄艳芳, 彭同华, 杨建. 碳化硅同质外延质量影响因素的分析与综述[J]. 人工晶体学报, 2024, 53(2): 210-217. |
[13] | 钱梦雪, 张志荣, 王华东, 张庆礼, 孙彧. 基于片状光束扫描的激光晶体内在缺陷表征方法[J]. 人工晶体学报, 2024, 53(2): 238-245. |
[14] | 罗晓航, 许光宇, 李利军, 张永康, 张亚琛, 吴海平, 安康. 自支撑金刚石厚膜三方向三点弯曲断裂韧性对比研究[J]. 人工晶体学报, 2024, 53(12): 2085-2093. |
[15] | 刘帅伟, 关春龙, 鲁云祥, 易剑, 江南, 西村一仁. 金刚石在富氧环境下的高效抛光及其材料去除机制研究[J]. 人工晶体学报, 2024, 53(12): 2094-2103. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 311
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 305
|
|
|||||||||||||||||||||||||||||||||||||||||||||