[1] BASSI G, BOSISIO L, CRISTAUDO P, et al. Calibration of diamond detectors for dosimetry in beam-loss monitoring[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1004: 165383.
[2] ZHANG M L, XIA Y B, WANG L J, et al. Response of chemical vapor deposition diamond detectors to X-ray[J]. Solid State Communications, 2004, 130(6): 425-428.
[3] SATO Y, SHIMAOKA T, KANEKO J H, et al. Radiation hardness of a single crystal CVD diamond detector for MeV energy protons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784: 147-150.
[4] BALMER R S, BRANDON J R, CLEWES S L, et al. Chemical vapour deposition synthetic diamond: materials, technology and applications[J]. Journal of Physics: Condensed Matter, 2009, 21(36): 364221.
[5] CANALI C, GATTI E, KOZLOV S F, et al. Electrical properties and performances of natural diamond nuclear radiation detectors[J]. Nuclear Instruments and Methods, 1979, 160(1): 73-77.
[6] KIM M, SEO J H, SINGISETTI U, et al. Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond[J]. Journal of Materials Chemistry C, 2017, 5(33): 8338-8354.
[7] ZHANG Z F, LIN C N, YANG X, et al. Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array[J]. Carbon, 2021, 173: 427-432.
[8] HEARNE S M, TRAJKOV E, JAMIESON D N, et al. The role of charge trapping at grain boundaries on charge transport in polycrystalline chemical vapor deposited diamond based detectors[J]. Journal of Applied Physics, 2006, 99(11): 113703.
[9] LIU L Y, OUYANG X P, ZHANG J F, et al. Polycrystalline CVD diamond detector: fast response and high sensitivity with large area[J]. AIP Advances, 2014, 4(1): 017114.
[10] ICHIKAWA K, SHIMAOKA T, KATO Y, et al. Dislocations in chemical vapor deposition diamond layer detected by confocal Raman imaging[J]. Journal of Applied Physics, 2020, 128(15): 155302.
[11] MOHAPATRA S, SAHU P K, RATH S, et al. Defect characterization and numerical modelling of single-crystal ultra-pure intrinsic diamond[J]. Diamond and Related Materials, 2020, 106: 107822.
[12] TRAN T T, KIANINIA M, BRAY K, et al. Nanodiamonds with photostable, sub-gigahertz linewidth quantum emitters[J]. APL Photonics, 2017, 2(11): 116103.
[13] MÜLLER T, HEPP C, PINGAULT B, et al. Optical signatures of silicon-vacancy spins in diamond[J]. Nature Communications, 2014, 5: 3328.
[14] IWASAKI T, ISHIBASHI F, MIYAMOTO Y, et al. A germanium-vacancy single photon source in diamond[EB/OL]. 2015: arXiv: 1503.04938[cond-mat.mtrl-sci]. https://arxiv.org/abs/1503.04938
[15] 韦 媚.位错影响下的红外探测器HgCdTe材料载流子输运特性研究[D].西安:西安电子科技大学,2020.
WEI M. Study on carrier transport characteristics of HgCdTe material for infrared detector under the influence of dislocation[D]. Xi'an: Xi'an University of Electronic Science and Technology, 2020(in Chinese).
[16] WANG W H, WANG Y, SHU G Y, et al. Recent progress on controlling dislocation density and behavior during heteroepitaxial single crystal diamond growth[J]. New Carbon Materials, 2021, 36(6): 1034-1045.
[17] KOIZUMI S, UMEZAWA H, PERNOT J, et al. Power electronics device applications of diamond semiconductors[M]. Oxford: Elsevier, 2018.
[18] 刘金龙,安 康,陈良贤,等.CVD金刚石自支撑膜的研究进展[J].表面技术,2018,47(4):1-10.
LIU J L, AN K, CHEN L X, et al. Research progress of freestanding CVD diamond films[J]. Surface Technology, 2018, 47(4): 1-10(in Chinese).
[19] HIRD J R, FIELD J E. Diamond polishing[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2004, 460(2052): 3547-3568.
[20] ACHARD J, TALLAIRE A, MILLE V, et al. Improvement of dislocation density in thick CVD single crystal diamond films by coupling H2/O2 plasma etching and chemo-mechanical or ICP treatment of HPHT substrates[J]. Physica Status Solidi (a), 2014, 211(10): 2264-2267.
[21] YAMAMOTO M, TERAJI T, ITO T. Improvement in the crystalline quality of homoepitaxial diamond films by oxygen plasma etching of mirror-polished diamond substrates[J]. Journal of Crystal Growth, 2005, 285(1/2): 130-136.
[22] MUCHNIKOV A B, VIKHAREV A L, BUTLER J E, et al. Homoepitaxial growth of CVD diamond after ICP pretreatment[J]. Physica Status Solidi (a), 2015, 212(11): 2572-2577.
[23] HICKS M L, PAKPOUR-TABRIZI A C, ZUERBIG V, et al. Optimizing reactive ion etching to remove sub-surface polishing damage on diamond[J]. Journal of Applied Physics, 2019, 125(24): 244502.
[24] SILVA F, ACHARD J, BRINZA O, et al. High quality, large surface area, homoepitaxial MPACVD diamond growth[J]. Diamond and Related Materials, 2009, 18(5/6/7/8): 683-697.
[25] LANGER J L, CIMALLA V, PRESCHER M, et al. Quality assessment of in situ plasma-etched diamond surfaces for chemical vapor deposition overgrowth[J]. Physica Status Solidi (a), 2021, 218(11): 2100035.
[26] TAVARES C, KOIZUMI S, KANDA H. Effects of RIE treatments for{111}diamond substrates on the growth of P-doped diamond thin films[J]. Physica Status Solidi (a), 2005, 202(11): 2129-2133.
[27] TERAJI T, TANIGUCHI T, KOIZUMI S, et al. Chemical vapor deposition of 12C isotopically enriched polycrystalline diamond[J]. Japanese Journal of Applied Physics, 2012, 51: 090104.
[28] LIU J L, LIN L Z, ZHAO Y, et al. Homo-epitaxial growth of single crystal diamond in the purified environment by active O atoms[J]. Vacuum, 2018, 155: 391-397.
[29] GUO Y Z, LIU J L, LIU J W, et al. Comparison of α particle detectors based on single-crystal diamond films grown in two types of gas atmospheres by microwave plasma-assisted chemical vapor deposition[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(5): 703-712.
[30] NISTOR S V, STEFAN M, RALCHENKO V, et al. Nitrogen and hydrogen in thick diamond films grown by microwave plasma enhanced chemical vapor deposition at variable H2 flow rates[J]. Journal of Applied Physics, 2000, 87(12): 8741-8746.
[31] ZHAO Y, GUO Y Z, LIN L Z, et al. Comparison of the quality of single-crystal diamonds grown on two types of seed substrates by MPCVD[J]. Journal of Crystal Growth, 2018, 491: 89-96.
[32] SECROUN A, BRINZA O, TARDIEU A, et al. Dislocation imaging for electronics application crystal selection[J]. Physica Status Solidi (a), 2007, 204(12): 4298-4304.
[33] SEIBT M, KHALIL R, KVEDER V, et al. Electronic states at dislocations and metal silicide precipitates incrystalline silicon and their role insolar cell materials[J]. Applied Physics A, 2009, 96(1): 235-253.
[34] BERDERMANN E, POMORSKI M, DE BOER W, et al. Diamond detectors for hadron physics research[J]. Diamond and Related Materials, 2010, 19(5/6): 358-367.
[35] GALBIATI A, LYNN S, OLIVER K, et al. Performance of monocrystalline diamond radiation detectors fabricated using TiW, Cr/Au and a novel ohmic DLC/Pt/Au electrical contact[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 1863-1874.
[36] 刘佳伟.高性能金刚石辐照探测器的研究与应用[D].武汉:武汉大学,2019.
LIU J W. Research and application of high performance diamond radiation detectors[D]. Wuhan: Wuhan University, 2019(in Chinese).
[37] LIU J W, CHANG J F, ZHANG J Z, et al. Design, fabrication and testing of CVD diamond detectors with high performance[J]. AIP Advances, 2019, 9(4): 045205.
[38] SATO Y, MURAKAMI H, SHIMAOKA T, et al. Single-crystal CVD diamond detector for high-resolution particle spectrometry[J]. Europhysics Letters, 2014, 108(4): 42001.
[39] 陆荣荣,裘惠源,朱德彰.离子束诱导电荷显微术的现状与发展趋势[J].核技术,2002,25(8):591-596.
LU R R, QIU H Y, ZHU D Z. The status and new trends of ion beam induced charge technique[J]. Nuclear Techniques, 2002, 25(8): 591-596(in Chinese).
[40] SHIMAOKA T, KOIZUMI S, TANAKA M M. Diamond photovoltaic radiation sensor using pn junction[J]. Applied Physics Letters, 2018, 113(9): 093504.
[41] KASAP S, RAMASWAMI K O, KABIR M Z, et al. Corrections to the Hecht collection efficiency in photoconductive detectors under large signals: non-uniform electric field due to drifting and trapped unipolar carriers[J]. Journal of Physics D: Applied Physics, 2019, 52(13): 135104.
[42] LIOLIOU G, LEFEUVRE G, BARNETT A M. High temperature (≤160 ℃) X-ray and β-particle diamond detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 991: 165025.
[43] GALLIN-MARTEL M L, CURTONI S, MARCATILI S, et al. X-ray beam induced current analysis of CVD diamond detectors in the perspective of a beam tagging hodoscope development for hadrontherapy on-line monitoring[J]. Diamond and Related Materials, 2021, 112: 108236.
[44] CAZZANIGA C, KASTRIOTOU M, GARCÍA ALÍA R, et al. Measurements of ultra-high energy lead ions using silicon and diamond detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 985: 164671.
[45] KOBAYASHI M I, ANGELONE M, YOSHIHASHI S, et al. Thermal neutron measurement by single crystal CVD diamond detector applied with the pulse shape discrimination during deuterium plasma experiment in LHD[J]. Fusion Engineering and Design, 2020, 161: 112063.
[46] PASSERI M, POMPILI F, ESPOSITO B, et al. Assessment of single crystal diamond detector radiation hardness to 14 MeV neutrons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1010: 165574.
[47] ABDEL-RAHMAN M A E, LOHSTROH A, BRYANT P. Alpha spectroscopy and X-ray induced photocurrent studies of a SC CVD diamond detector fabricated with PLD contacts[J]. Radiation Physics and Chemistry, 2019, 164: 108357.
[48] SU K, REN Z Y, ZHANG J F, et al. High performance hydrogen/oxygen terminated CVD single crystal diamond radiation detector[J]. Applied Physics Letters, 2020, 116(9): 092104.
[49] 黄广伟,吴 坤,陈 晔,等.单晶金刚石探测器对14MeV单能中子的响应[J].物理学报,2021,70(20):202901.
HUANG G W, WU K, CHEN Y, et al. Response to 14 MeV neutrons for single-crystal diamond detectors[J]. Acta Physica Sinica, 2021, 70(20): 202901(in Chinese).
[50] LIU Y H, LOH C W, ZHANG J L, et al. Proton irradiation tests of single crystal diamond detector at CIAE[J]. Nuclear Materials and Energy, 2020, 22: 100735.
[51] POMORSKI M, CAYLAR B, BERGONZO P. Super-thin single crystal diamond membrane radiation detectors[J]. Applied Physics Letters, 2013, 103(11): 112106.
[52] LOHSTROH A, SELLIN P J, WANG S G, et al. Effect of dislocations on charge carrier mobility-lifetime product in synthetic single crystal diamond[J]. Applied Physics Letters, 2007, 90(10): 102111.
[53] TARUN A, LEE S J, YAP C M, et al. Impact of impurities and crystal defects on the performance of CVD diamond detectors[J]. Diamond and Related Materials, 2016, 63: 169-174.
[54] SU K, HE Q, ZHANG J F, et al. Device performance of chemical vapor deposition monocrystal diamond radiation detectors correlated with the bulk diamond properties[J]. Journal of Physics D: Applied Physics, 2021, 54(14): 145105.
[55] STEHL C, FISCHER M, GSELL S, et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications[J]. Applied Physics Letters, 2013, 103(15): 151905.
[56] CHERNYKH S V, CHERNYKH A V, TARELKIN S A, et al. High-pressure high-temperature single-crystal diamond type Ⅱa characterization for particle detectors[J]. Physica Status Solidi (a), 2020, 217(8): 1900888.
[57] SATO S I, MAKINO T, OHSHIMA T, et al. Transient current induced in thin film diamonds by swift heavy ions[J]. Diamond and Related Materials, 2017, 75: 161-168.
[58] TSUBOTA M, KANEKO J H, MIYAZAKI D, et al. High-temperature characteristics of charge collection efficiency using single CVD diamond detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 789: 50-56.
[59] VARTSKY D, GOLDBERG M, EISEN Y, et al. Radiation induced polarization in CdTe detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1988, 263(2/3): 457-462.
[60] HOLMES J M, DUTTA M, KOECK F A, et al. Neutralizing the polarization effect of diamond diode detectors using periodic forward bias pulses[J]. Diamond and Related Materials, 2019, 94: 162-165.
[61] MANFREDOTTI C, VITTONE E, FIZZOTTI F, et al. Effects of light on the ‘primed' state of CVD diamond nuclear detectors[J]. Diamond and Related Materials, 2002, 11(3/4/5/6): 446-450.
[62] RAMOS M R, CRNJAC A, COSIC D, et al. Ion microprobe study of the polarization quenching techniques in single crystal diamond radiation detectors[J]. Materials, 2022, 15(1): 388.
[63] ZOU M N, BOHON J, SMEDLEY J, et al. Proton radiation effects on carrier transport in diamond radiation detectors[J]. AIP Advances, 2020, 10(2): 025004.
[64] STEINEGGER P, DRESSLER R, EICHLER R, et al. Diamond detectors for high-temperature transactinide chemistry experiments[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 850: 61-67.
[65] KUMAR A, KUMAR A, TOPKAR A, et al. Prototyping and performance study of a single crystal diamond detector for operation at high temperatures[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 858: 12-17.
[66] CRNJAC A, SKUKAN N, PROVATAS G, et al. Electronic properties of a synthetic single-crystal diamond exposed to high temperature and high radiation[J]. Materials, 2020, 13(11): 2473.
[67] CRNJAC A, RAMOS M R, SKUKAN N, et al. Charge transport in single crystal CVD diamond studied at high temperatures[J]. Journal of Physics D: Applied Physics, 2021, 54(46): 465103.
[68] OGASAWARA K, BROILES T W, COULTER K E, et al. Single crystal chemical vapor deposit diamond detector for energetic plasma measurement in space[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 777: 131-137.
[69] DUEÑAS J A, MORA J M, TRAEGER M, et al. Time response of 50 μm thickness single crystal diamond detectors[J]. Diamond and Related Materials, 2015, 55: 144-148.
[70] BOSSINI E, MINAFRA N. Diamond detectors for timing measurements in high energy physics[J]. Frontiers in Physics, 2020, 8: 248.
[71] TRISCHUK W, et al. Diamond particle detectors for high energy physics[J]. Nuclear and Particle Physics Proceedings, 2016, 273/274/275: 1023-1028.
[72] POMPILI F, ESPOSITO B, MAROCCO D, et al. Radiation and thermal stress test on diamond detectors for the radial neutron camera of ITER[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 936: 62-64.
[73] 刘金龙,朱肖华,郭彦召,等.金刚石探测器材料研制与中子探测性能研究[J].真空电子技术,2021(5):46-53+72.
LIU J L, ZHU X H, GUO Y Z, et al. Material development and neutron detection performance of diamond detector[J]. Vacuum Electronics, 2021(5): 46-53+72(in Chinese).
[74] CURTONI S, GALLIN-MARTEL M L, MARCATILI S, et al. Performance of CVD diamond detectors for single ion beam-tagging applications in hadrontherapy monitoring[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1015: 165757. |