[1] 郑 彧,张 怡,童亚琦,等.掺硼金刚石膜研究进展及应用[J].人工晶体学报,2021,50(6):1138-1148. ZHENG Y, ZHANG Y, TONG Y Q, et al. Research progress and application of boron-doped diamond film[J]. Journal of Synthetic Crystals, 2021, 50(6): 1138-1148(in Chinese). [2] MASANTE C, ROUGER N, PERNOT J. Recent progress in deep-depletion diamond metal-oxide-semiconductor field-effect transistors[J]. Journal of Physics D: Applied Physics, 2021, 54(23): 233002. [3] ARAUJO D, SUZUKI M, LLORET F, et al. Diamond for electronics: materials, processing and devices[J]. Materials, 2021, 14(22): 7081. [4] UMEZAWA H. Recent advances in diamond power semiconductor devices[J]. Materials Science in Semiconductor Processing, 2018, 78: 147-156. [5] 王艳丰,王宏兴.MPCVD单晶金刚石生长及其电子器件研究进展[J].人工晶体学报,2020,49(11):2139-2152. WANG Y F, WANG H X. Research progress of MPCVD single crystal diamond growth and diamond electronic devices[J]. Journal of Synthetic Crystals, 2020, 49(11): 2139-2152(in Chinese). [6] CRAWFORD K G, MAINI I, MACDONALD D A, et al. Surface transfer doping of diamond: a review[J]. Progress in Surface Science, 2021, 96(1): 100613. [7] XIE C, LU X T, TONG X W, et al. Ultrawide-bandgap semiconductors: recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors[J]. Advanced Functional Materials, 2019, 29(9): 1970057. [8] LU Y J, LIN C N, SHAN C X. Optoelectronic diamond: growth, properties, and photodetection applications[J]. Advanced Optical Materials, 2018, 6(20): 1800359. [9] PENG J H, ZENG J W, XIAO Y, et al. Novel conversion annealing pretreatment for improved deposition of diamond coatings onto WC-Co cemented carbide[J]. Journal of Alloys and Compounds, 2022, 893: 162325. [10] 赵正平.超宽禁带半导体金刚石功率电子学研究的新进展[J].半导体技术,2021,46(1):1-14. ZHAO Z P. New research progress in ultra wide bandgap semiconductor diamond power electronics[J]. Semiconductor Technology, 2021, 46(1): 1-14(in Chinese). [11] KOIZUMI S, WATANABE K, HASEGAWA M, et al. Ultraviolet emission from a diamond pn junction[J]. Science, 2001, 292(5523): 1899-1901. [12] KASU M, UEDA K, YAMAUCHI Y, et al. Diamond-based RF power transistors: fundamentals and applications[J]. Diamond and Related Materials, 2007, 16(4/5/6/7): 1010-1015. [13] KOIZUMI S, UMEZAWA H, PERNOT J, et al. Power electronics device applications of diamond semiconductors[M]. Woodhead publishing, 2018. [14] KOBASHI K, NISHIMURA K, KAWATE Y, et al. Synthesis of diamonds by use of microwave plasma chemical-vapor deposition: morphology and growth of diamond films[J]. Physical Review B, Condensed Matter, 1988, 38(6): 4067-4084. [15] OKUSHI H. High quality homoepitaxial CVD diamond for electronic devices[J]. Diamond and Related Materials, 2001, 10(3/4/5/6/7): 281-288. [16] SEKI Y, HOSHINO Y, NAKATA J. Extremely high-efficient activation of acceptor boron introduced by ion implantation at room temperature with various doping concentrations in epitaxially synthesized diamond films by chemical vapor deposition[J]. Journal of Applied Physics, 2021, 129(19): 195702. [17] NIE S Y, SHEN W, SHEN S N, et al. Effects of vacancy and hydrogen on the growth and morphology of N-type phosphorus-doped diamond surfaces[J]. Applied Sciences, 2021, 11(4): 1896. [18] NEBEL C E, YANG N J, YAMASAKI S. Diamond: carbon at its best[J]. Carbon, 2021, 182: 711-714. [19] SHIGEMATSU S, OISHI T, SEKI Y, et al. Schottky barrier diodes fabricated on high-purity type-IIa CVD diamond substrates using an all-ion-implantation process[J]. Japanese Journal of Applied Physics, 2021, 60(5): 050903. [20] SCOTT E A, HATTAR K, BRAUN J L, et al. Orders of magnitude reduction in the thermal conductivity of polycrystalline diamond through carbon, nitrogen, and oxygen ion implantation[J]. Carbon, 2020, 157: 97-105. [21] SMITH J M, MEYNELL S A, BLESZYNSKI JAYICH A C, et al. Colour centre generation in diamond for quantum technologies[J]. Nanophotonics, 2019, 8(11): 1889-1906. [22] LÜHMANN T, RAATZ N, JOHN R, et al. Screening and engineering of colour centres in diamond[J]. Journal of Physics D: Applied Physics, 2018, 51(48): 483002. [23] FONTAINE F, UZAN-SAGUY C, PHILOSOPH B, et al. Boron implantation/in situ annealing procedure for optimal p-type properties of diamond[J]. Applied Physics Letters, 1996, 68(16): 2264-2266. [24] UZAN-SAGUY C, KALISH R, WALKER R, et al. Formation of delta-doped, buried conducting layers in diamond, by high-energy, B-ion implantation[J]. Diamond and Related Materials, 1998, 7(10): 1429-1432. [25] COLLINS A T, WILLIAMS A S. The nature of the acceptor centre in semiconducting diamond[J]. Journal of Physics C: Solid State Physics, 1971, 4(13): 1789-1800. [26] FONTAINE F. Calculation of the hole concentration in boron-doped diamond[J]. Journal of Applied Physics, 1999, 85(3): 1409-1422. [27] MORTET V, PERNOT J, JOMARD F, et al. Properties of boron-doped epitaxial diamond layers grown on (110) oriented single crystal substrates[J]. Diamond and Related Materials, 2015, 53: 29-34. [28] TALLAIRE A, VALENTIN A, MILLE V, et al. Growth of thick and heavily boron-doped (113)-oriented CVD diamond films[J]. Diamond and Related Materials, 2016, 66: 61-66. [29] MORTET V, TAYLOR A, LAMBERT N, et al. Properties of boron-doped (113) oriented homoepitaxial diamond layers[J]. Diamond and Related Materials, 2021, 111: 108223. [30] YAMANAKA S, TAKEUCHI D, WATANABE H, et al. Low-compensated boron-doped homoepitaxial diamond films[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 956-959. [31] YAP C M, ANSARI K, XIAO S, et al. Properties of near-colourless lightly boron doped CVD diamond[J]. Diamond and Related Materials, 2018, 88: 118-122. [32] TSUBOUCHI N, OGURA M, KATO H, et al. p-type doping by B ion implantation into diamond at elevated temperatures[J]. Diamond and Related Materials, 2006, 15(1): 157-159. [33] INUSHIMA T, MATSUSHITA T, OHYA S, et al. Hopping conduction via the excited states of boron in p-type diamond[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 1066-1070. [34] KALISH R, UZAN-SAGUY C, PHILOSOPH B, et al. Nitrogen doping of diamond by ion implantation[J]. Diamond and Related Materials, 1997, 6(2/3/4): 516-520. [35] HASEGAWA M, TAKEUCHI D, YAMANAKA S, et al. n-type control by sulfur ion implantation in homoepitaxial diamond films grown by chemical vapor deposition[J]. Japanese Journal of Applied Physics, 1999, 38(Part 2, No. 12B): L1519-L1522. [36] PRINS J F. The nature of radiation damage in diamond: activation of oxygen donors[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 1275-1281. [37] PRINS J F. N-type semiconducting diamond by means of oxygen-ion implantation[J]. Physical Review B, 2000, 61(11): 7191-7194. [38] KOIZUMI S, KAMO M, SATO Y, et al. Growth and characterization of phosphorous doped{111}homoepitaxial diamond thin films[J]. Applied Physics Letters, 1997, 71(8): 1065-1067. [39] KATO H, MAKINO T, YAMASAKI S, et al. n-type diamond growth by phosphorus doping on (001)-oriented surface[J]. Journal of Physics D: Applied Physics, 2007, 40(20): 6189-6200. [40] HASEGAWA M, TERAJI T, KOIZUMI S. Lattice location of phosphorus in n-type homoepitaxial diamond films grown by chemical-vapor deposition[J]. Applied Physics Letters, 2001, 79(19): 3068-3070. [41] KATO H, TAKEUCHI D, TOKUDA N, et al. Electrical activity of doped phosphorus atoms in (001) n-type diamond[J]. Physica Status Solidi (a), 2008, 205(9): 2195-2199. [42] KATAGIRI M, ISOYA J, KOIZUMI S, et al. Lightly phosphorus-doped homoepitaxial diamond films grown by chemical vapor deposition[J]. Applied Physics Letters, 2004, 85(26): 6365-6367. [43] LIU D Y, HAO L C, CHEN Z A, et al. Sulfur regulation of boron doping and growth behavior for high-quality diamond in microwave plasma chemical vapor deposition[J]. Applied Physics Letters, 2020, 117(2): 022101. [44] VOLPE P N, PERNOT J, MURET P, et al. High hole mobility in boron doped diamond for power device applications[J]. Applied Physics Letters, 2009, 94(9): 092102. [45] NICLEY S S. The boron doping of single crystal diamond for high power diode applications[D]. Michigan State University, 2015. [46] TERAJI T, WADA H, YAMAMOTO M, et al. Highly efficient doping of boron into high-quality homoepitaxial diamond films[J]. Diamond and Related Materials, 2006, 15(4/5/6/7/8): 602-606. [47] GABRYSCH M, MAJDI S, HALLÉN A, et al. Compensation in boron-doped CVD diamond[J]. Physica Status Solidi (a), 2008, 205(9): 2190-2194. [48] GROTJOHN T, NICLEY S, TRAN D, et al. Single crystal boron-doped diamond synthesis[J]. MRS Proceedings, 2009, 1203: 1203-J17. [49] BRESNEHAN M. Microwave plasma chemical vapor deposition of homoepitaxial diamond for M-i-P diodes: a study of reactor design, growth kinetics, and surface morphology[D]. 2010. [50] PERNOT J, VOLPE P N, OMNÈS F, et al. Hall hole mobility in boron-doped homoepitaxial diamond[J]. Physical Review B, 2010, 81(20): 205203. [51] DENISENKO A V, MELNIKOV A A, ZAITSEV A M, et al. p-type semiconducting structures in diamond implanted with boron ions[J]. Materials Science and Engineering: B, 1992, 11(1/2/3/4): 273-277. [52] TOKUDA N, UMEZAWA H, SAITO T, et al. Surface roughening of diamond (001) films during homoepitaxial growth in heavy boron doping[J]. Diamond and Related Materials, 2007, 16(4/5/6/7): 767-770. [53] OHMAGARI S, SRIMONGKON K, YAMADA H, et al. Low resistivity p+ diamond (100) films fabricated by hot-filament chemical vapor deposition[J]. Diamond and Related Materials, 2015, 58: 110-114. [54] UZAN-SAGUY C, CYTERMANN C, BRENER R, et al. Damage threshold for ion-beam induced graphitization of diamond[J]. Applied Physics Letters, 1995, 67(9): 1194-1196. [55] PRINS J F. Electrical conduction in diamond after vacancy generation by means of carbon-ion implantation[J]. Applied Physics Letters, 2000, 76(15): 2095-2097. [56] PRINS J F. Activation of boron-dopant atoms in ion-implanted diamonds[J]. Physical Review B, Condensed Matter, 1988, 38(8): 5576-5584. [57] VOGEL T, MEIJER J, ZAITSEV A. Highly effective p-type doping of diamond by MeV-ion implantation of boron[J]. Diamond and Related Materials, 2004, 13(10): 1822-1825. [58] TSUBOUCHI N, OGURA M, HORINO Y, et al. Low-resistance p+ layer formation into diamond using heavily B ion implantation[J]. Applied Physics Letters, 2006, 89(1): 012101. [59] TSUBOUCHI N, OGURA M. Enhancement of dopant activation in B-implanted diamond by high-temperature annealing[J]. Japanese Journal of Applied Physics, 2008, 47(9): 7047-7051. [60] TSUBOUCHI N, OGURA M, MIZUOCHI N, et al. Electrical properties of a B doped layer in diamond formed by hot B implantation and high-temperature annealing[J]. Diamond and Related Materials, 2009, 18(2/3): 128-131. [61] SEKI Y, HOSHINO Y, NAKATA J. Remarkable p-type activation of heavily doped diamond accomplished by boron ion implantation at room temperature and subsequent annealing at relatively low temperatures of 1150 and 1 300 ℃[J]. Applied Physics Letters, 2019, 115(7): 072103. [62] SEKI Y, HOSHINO Y, NAKATA J. Electrical properties and conduction mechanisms of heavily B+-ion-implanted type IIa diamond: effects of temperatures during the ion implantation and postannealing upon electrical conduction[J]. Japanese Journal of Applied Physics, 2020, 59(2): 021003. [63] OKANO K, KOIZUMI S, SILVA S R P, et al. Low-threshold cold cathodes made of nitrogen-doped chemical-vapour-deposited diamond[J]. Nature, 1996, 381(6578): 140-141. [64] KATO H, OGURA M, MAKINO T, et al. N-type control of single-crystal diamond films by ultra-lightly phosphorus doping[J]. Applied Physics Letters, 2016, 109(14): 142102. [65] PINAULT-THAURY M A, STENGER I, GILLET R, et al. Attractive electron mobility in (113) n-type phosphorus-doped homoepitaxial diamond[J]. Carbon, 2021, 175: 254-258. [66] PINAULT-THAURY M A, TEMGOUA S, GILLET R, et al. Phosphorus-doped (113) CVD diamond: a breakthrough towards bipolar diamond devices[J]. Applied Physics Letters, 2019, 114(11): 112106. [67] SHEN W, SHEN S N, LIU S, et al. Binding of hydrogen to phosphorus dopant in phosphorus-doped diamond surfaces: a density functional theory study[J]. Applied Surface Science, 2019, 471: 309-317. [68] KATO H, BARJON J, HABKA N, et al. Energy level of compensator states in (001) phosphorus-doped diamond[J]. Diamond and Related Materials, 2011, 20(7): 1016-1019. [69] PINAULT-THAURY M A, STENGER I, JOMARD F, et al. Electrical activity of (100) n-type diamond with full donor site incorporation of phosphorus[J]. Physica Status Solidi (a), 2015, 212(11): 2454-2459. [70] STENGER I, PINAULT-THAURY M A, TEMAHUKI N, et al. Electron mobility in (100) homoepitaxial layers of phosphorus-doped diamond[J]. Journal of Applied Physics, 2021, 129(10): 105701. [71] GROTJOHN T A, TRAN D T, YARAN M K, et al. Heavy phosphorus doping by epitaxial growth on the (111) diamond surface[J]. Diamond and Related Materials, 2014, 44: 129-133. [72] OHTANI R, YAMAMOTO T, JANSSENS S D, et al. Large improvement of phosphorus incorporation efficiency in n-type chemical vapor deposition of diamond[J]. Applied Physics Letters, 2014, 105(23): 232106. [73] KATAMUNE Y, MORI D C, ARIKAWA D, et al. n-type doping of diamond by hot-filament chemical vapor deposition growth with phosphorus incorporation[J]. Applied Physics A, 2020, 126(11): 1-6. [74] KOCINIEWSKI T, BARJON J, PINAULT M A, et al. n-type CVD diamond doped with phosphorus using the MOCVD technology for dopant incorporation[J]. Physica Status Solidi (a), 2006, 203(12): 3136-3141. [75] LIU X B, CHEN X, SINGH D J, et al. Boron-oxygen complex yields n-type surface layer in semiconducting diamond[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(16): 7703-7711. [76] DAS D, KANDASAMI A, RAMACHANDRA RAO M S. Realization of highly conducting n-type diamond by phosphorus ion implantation[J]. Applied Physics Letters, 2021, 118(10): 102102. [77] DAS D, RAO M S R. N+-ion implantation induced enhanced conductivity in polycrystalline and single crystal diamond[J]. RSC Advances, 2021, 11(38): 23686-23699. |