人工晶体学报 ›› 2022, Vol. 51 ›› Issue (6): 1110-1121.
杨思琪1, 郑永杰1, 张宏瑞2, 赵云鹏1, 田景芝1
收稿日期:
2022-03-30
出版日期:
2022-06-15
发布日期:
2022-07-18
通讯作者:
郑永杰,博士,教授。E-mail:zyj1964@163.com
作者简介:
杨思琪(1998—),女,黑龙江人,硕士研究生。E-mail:ysq19980128@163.com
基金资助:
YANG Siqi1, ZHENG Yongjie1, ZHANG Hongrui2, ZHAO Yunpeng1, TIAN Jingzhi1
Received:
2022-03-30
Online:
2022-06-15
Published:
2022-07-18
摘要: 半导体异质结光催化剂因其在太阳能利用和转化方面广阔的应用前景而备受关注。合理构建两种或两种以上半导体材料的异质结构,可以集成多种组分的优点,改善光生电荷分离,扩大对可见光的吸收范围,保持光催化剂的高氧化还原能力。近年来,由于g-C3N4具有合成简单、稳定性高、独特的光学和电学特性等诸多优点,g-C3N4基异质结构的构建成为研究热点。本文针对近年来g-C3N4基异质结改性的研究现状,依据g-C3N4与其他半导体电荷转移路径的不同综述了三种异质结结构(g-C3N4基Ⅱ型异质结、g-C3N4基Z型异质结和g-C3N4基S型异质结),以及其在环境修复和能源方面的应用。最后对g-C3N4基异质结光催化剂存在的问题进行总结和展望。
中图分类号:
杨思琪, 郑永杰, 张宏瑞, 赵云鹏, 田景芝. g-C3N4基异质结的光催化应用研究进展[J]. 人工晶体学报, 2022, 51(6): 1110-1121.
YANG Siqi, ZHENG Yongjie, ZHANG Hongrui, ZHAO Yunpeng, TIAN Jingzhi. Research Progress of g-C3N4-Based Heterojunctions in Photocatalytic Applications[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(6): 1110-1121.
[1] LUO J, CHEN J F, GUO R T, et al. Rational construction of direct Z-scheme LaMnO3/g-C3N4 hybrid for improved visible-light photocatalytic tetracycline degradation[J]. Separation and Purification Technology, 2019, 211: 882-894. [2] 张家晶,郑永杰,金春雪,等.g-C3N4基光催化剂改性的研究进展[J].现代化工,2021,41(3):42-47. ZHANG J J, ZHENG Y J, JIN C X, et al. Research progress on modification of g-C3N4-based photocatalyst[J]. Modern Chemical Industry, 2021, 41(3): 42-47(in Chinese). [3] XING Y P, WANG X K, HAO S H, et al. Recent advances in the improvement of g-C3N4 based photocatalytic materials[J]. Chinese Chemical Letters, 2021, 32(1): 13-20. [4] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. [5] JIN Y H, LI C M, ZHANG Y F. Preparation and visible-light driven photocatalytic activity of the rGO/TiO2/BiOI heterostructure for methyl orange degradation[J]. New Carbon Materials, 2020, 35(4): 394-400. [6] 郑永杰,卢致瑞,田景芝,等.TiO2/MOFs的制备及污染物降解现状[J].精细化工,2021,38(11):2208-2218. ZHENG Y J, LU Z R, TIAN J Z, et al. Preparation of TiO2/MOFs and current status of pollutant degradation[J]. Fine Chemicals, 2021, 38(11): 2208-2218(in Chinese). [7] CAO S W, YU J G. G-C3N4-based photocatalysts for hydrogen generation[J]. The Journal of Physical Chemistry Letters, 2014, 5(12): 2101-2107. [8] ZHOU Y J, LI J Z, LIU C Y, et al. Construction of 3D porous g-C3N4/AgBr/rGO composite for excellent visible light photocatalytic activity[J]. Applied Surface Science, 2018, 458: 586-596. [9] WANG Y G, XIA Q N, BAI X, et al. Carbothermal activation synthesis of 3D porous g-C3N4/carbon nanosheets composite with superior performance for CO2 photoreduction[J]. Applied Catalysis B: Environmental, 2018, 239: 196-203. [10] ISMAEL M. A review on graphitic carbon nitride (g-C3N4) based nanocomposites: synthesis, categories, and their application in photocatalysis[J]. Journal of Alloys and Compounds, 2020, 846: 156446. [11] ZHANG J J, ZHENG Y J, ZHENG H S. A 2D/3D g-C3N4/BiOI heterostructure nano-sphere with oxygen-doped for enhanced visible light-driven photocatalytic activity in environmental remediation[J]. Journal of Alloys and Compounds, 2022, 897: 163044. [12] WEN J Q, XIE J, CHEN X B, et al. A review on g-C3N4-based photocatalysts[J]. Applied Surface Science, 2017, 391: 72-123. [13] CHEN W, DUAN G R, LIU T Y, et al. Fabrication of Bi2MoO6 nanoplates hybridized with g-C3N4 nanosheets as highly efficient visible light responsive heterojunction photocatalysts for Rhodamine B degradation[J]. Materials Science in Semiconductor Processing, 2015, 35: 45-54. [14] HAN C C, SU P F, TAN B H, et al. Defective ultra-thin two-dimensional g-C3N4 photocatalyst for enhanced photocatalytic H2 evolution activity[J]. Journal of Colloid and Interface Science, 2021, 581: 159-166. [15] HE Y Q, MA Z Y, BINNAH L Jr. Distinctive binary g-C3N4/MoS2 heterojunctions with highly efficient ultrasonic catalytic degradation for levofloxacin and methylene blue[J]. Ceramics International, 2020, 46(8): 12364-12372. [16] LI H J, TU W G, ZHOU Y, et al. Z-scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges[J]. Advanced Science, 2016, 3(11): 1500389. [17] ZHENG Z, ZU X T, ZHANG Y, et al. Rational design of type-Ⅱ nano-heterojunctions for nanoscale optoelectronics[J]. Materials Today Physics, 2020, 15: 100262. [18] ZHONG R Y, ZHANG Z S, YI H Q, et al. Covalently bonded 2D/2D O-g-C3N4/TiO2 heterojunction for enhanced visible-light photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 237: 1130-1138. [19] FIQAR Z, TAO J N, YANG T, et al. Designing 0D/2D CdS nanoparticles/g-C3N4 nanosheets heterojunction as efficient photocatalyst for improved H2-evolution[J]. Surfaces and Interfaces, 2021, 26: 101312. [20] LAI Y J, LEE D J. Pollutant degradation with mediator Z-scheme heterojunction photocatalyst in water: a review[J]. Chemosphere, 2021, 282: 131059. [21] LAI Y J, LEE D J. Solid mediator Z-scheme heterojunction photocatalysis for pollutant oxidation in water: principles and synthesis perspectives[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 125: 88-114. [22] ZHAO W, LI Y J, ZHAO P S, et al. Insights into the photocatalysis mechanism of the novel 2D/3D Z-Scheme g-C3N4/SnS2 heterojunction photocatalysts with excellent photocatalytic performances[J]. Journal of Hazardous Materials, 2021, 402: 123711. [23] BARD A J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors[J]. Journal of Photochemistry, 1979, 10(1): 59-75. [24] TADA H, MITSUI T, KIYONAGA T, et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system[J]. Nature Materials, 2006, 5(10): 782-786. [25] YU J G, WANG S H, LOW J, et al. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air[J]. Physical Chemistry Chemical Physics: PCCP, 2013, 15(39): 16883-16890. [26] WANG D B, YU X, FENG Q G, et al. In-situ growth of β-Bi2O3 nanosheets on g-C3N4 to construct direct Z-scheme heterojunction with enhanced photocatalytic activities[J]. Journal of Alloys and Compounds, 2021, 859: 157795. [27] GUO H W, WAN S P, WANG Y N, et al. Enhanced photocatalytic CO2 reduction over direct Z-scheme NiTiO3/g-C3N4 nanocomposite promoted by efficient interfacial charge transfer[J]. Chemical Engineering Journal, 2021, 412: 128646. [28] SARAVANAKUMAR K, PARK C M. Rational design of a novel LaFeO3/g-C3N4/BiFeO3 double Z-scheme structure: photocatalytic performance for antibiotic degradation and mechanistic insight[J]. Chemical Engineering Journal, 2021, 423: 130076. [29] YANG H, HE D Y, LIU C H, et al. Visible-light-driven photocatalytic disinfection by S-scheme α-Fe2O3/g-C3N4 heterojunction: bactericidal performance and mechanism insight[J]. Chemosphere, 2022, 287: 132072. [30] JIANG Y B, SUN Z Z, CHEN Q W, et al. Fabrication of 0D/2D TiO2 Nanodots/g-C3N4 S-scheme heterojunction photocatalyst for efficient photocatalytic overall water splitting[J]. Applied Surface Science, 2022, 571: 151287. [31] LI Q Q, ZHAO W L, ZHAI Z C, et al. 2D/2D Bi2MoO6/g-C3N4 S-scheme heterojunction photocatalyst with enhanced visible-light activity by Au loading[J]. Journal of Materials Science & Technology, 2020, 56: 216-226. [32] FU Y W, ZHANG Y, XIE X, et al. Functionalized carbon nanotube bridge interface drove Bi2O2CO3/g-C3N4 S-scheme heterojunction with enhanced visible-light photocatalytic activity[J]. Separation and Purification Technology, 2021, 274: 119032. [33] YUAN Y, GUO R T, HONG L F, et al. Fabrication of a dual S-scheme Bi7O9I3/g-C3N4/Bi3O4Cl heterojunction with enhanced visible-light-driven performance for phenol degradation[J]. Chemosphere, 2022, 287: 132241. [34] ZHOU P, LV F, LI N, et al. Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production[J]. Nano Energy, 2019, 56: 127-137. [35] HE K L, XIE J, LUO X Y, et al. Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nansheets/WO3 nanorods nanocomposites loaded with Ni(OH)x cocatalysts[J]. Chinese Journal of Catalysis, 2017, 38(2): 240-252. [36] ZHANG J, HUANG Y Y, NIE T, et al. Enhanced visible-light photocatalytic H2 production of hierarchical g-C3N4 hexagon by one-step self-assembly strategy[J]. Applied Surface Science, 2020, 499: 143942. [37] YAN J Q, PENG W, ZHANG S S, et al. Ternary Ni2P/reduced graphene oxide/g-C3N4 nanotubes for visible light-driven photocatalytic H2 production[J]. International Journal of Hydrogen Energy, 2020, 45(32): 16094-16104. [38] CHE H N, CHE G B, ZHOU P J, et al. Nitrogen doped carbon ribbons modified g-C3N4 for markedly enhanced photocatalytic H2-production in visible to near-infrared region[J]. Chemical Engineering Journal, 2020, 382: 122870. [39] LI J Q, LIU X T, LIU C B, et al. Facile nitrogen and sulfur deficient engineering on sulfur doped g-C3N4 for efficiently photocatalytic H2 evolution[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 117: 93-102. [40] YANG J, LIANG Y J, LI K, et al. One-step synthesis of novel K+ and cyano groups decorated triazine-/heptazine-based g-C3N4 tubular homojunctions for boosting photocatalytic H2 evolution[J]. Applied Catalysis B: Environmental, 2020, 262: 118252. [41] JI C, YIN S N, SUN S S, et al. An in situ mediator-free route to fabricate Cu2O/g-C3N4 type-Ⅱ heterojunctions for enhanced visible-light photocatalytic H2 generation[J]. Applied Surface Science, 2018, 434: 1224-1231. [42] HAO X Q, ZHOU J, CUI Z W, et al. Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production[J]. Applied Catalysis B: Environmental, 2018, 229: 41-51. [43] WANG J, WANG G H, WANG X, et al. 3D/2D direct Z-scheme heterojunctions of hierarchical TiO2 microflowers/g-C3N4 nanosheets with enhanced charge carrier separation for photocatalytic H2 evolution[J]. Carbon, 2019, 149: 618-626. [44] FU J W, XU Q L, LOW J, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Applied Catalysis B: Environmental, 2019, 243: 556-565. [45] WANG N, WU L P, LI J, et al. Construction of hierarchical Fe2O3@MnO2 core/shell nanocube supported C3N4 for dual Z-scheme photocatalytic water splitting[J]. Solar Energy Materials and Solar Cells, 2020, 215: 110624. [46] 李冬梅,卢文聪,梁奕聪,等.Bi5O7I/g-C3N4 Z型异质结的常温沉淀制备及其光催化性能研究[J].中国环境科学,2021,41(9):4120-4126. LI D M, LU W C, LIANG Y C, et al. Room-temperature precipitation synthesis and photocatalysis of Bi5O7I/g-C3N4 Z-scheme heterojunction[J]. China Environmental Science, 2021, 41(9): 4120-4126(in Chinese). [47] 张 洁,田景芝,郝 欣,等.CDs/ZnO/g-C3N4三元组分协同作用促进光催化降解染料[J].精细化工,2019,36(7):1439-1445. ZHANG J, TIAN J Z, HAO X, et al. Synergistic effect of CDs/ZnO/g-C3N4 ternary component for photocatalytic degradation of dyes[J]. Fine Chemicals, 2019, 36(7): 1439-1445(in Chinese). [48] WU S Z, LI K, ZHANG W D. On the heterostructured photocatalysts Ag3VO4/g-C3N4 with enhanced visible light photocatalytic activity[J]. Applied Surface Science, 2015, 324: 324-331. [49] HONG Y Z, LI C S, YIN B X, et al. Promoting visible-light-induced photocatalytic degradation of tetracycline by an efficient and stable beta-Bi2O3@g-C3N4 core/shell nanocomposite[J]. Chemical Engineering Journal, 2018, 338: 137-146. [50] GHOSH U, PAL A. Fabrication of a novel Bi2O3 nanoparticle impregnated nitrogen vacant 2D g-C3N4 nanosheet Z scheme photocatalyst for improved degradation of methylene blue dye under LED light illumination[J]. Applied Surface Science, 2020, 507: 144965. [51] JIN Z H, HU R S, WANG H Y, et al. One-step impregnation method to prepare direct Z-scheme LaCoO3/g-C3N4 heterojunction photocatalysts for phenol degradation under visible light[J]. Applied Surface Science, 2019, 491: 432-442. [52] ZHAO G S, DING J, ZHOU F Y, et al. Construction of a visible-light-driven magnetic dual Z-scheme BiVO4/g-C3N4/NiFe2O4 photocatalyst for effective removal of ofloxacin: mechanisms and degradation pathway[J]. Chemical Engineering Journal, 2021, 405: 126704. [53] LIU W, ZHOU J B, ZHOU Y, et al. Peroxymonosulfate-assisted g-C3N4@Bi2MoO6 photocatalytic system for degradation of nimesulide through phenyl ether bond cleavage under visible light irradiation[J]. Separation and Purification Technology, 2021, 264: 118288. [54] DOU M M, WANG J, GAO B R, et al. Photocatalytic difference of amoxicillin and cefotaxime under visible light by mesoporous g-C3N4: mechanism, degradation pathway and DFT calculation[J]. Chemical Engineering Journal, 2020, 383: 123134. [55] ZHANG X F, ZHANG Y, JIA X B, et al. In situ fabrication of a novel S-scheme heterojunction photocatalyts Bi2O3/P-C3N4 to enhance levofloxacin removal from water[J]. Separation and Purification Technology, 2021, 268: 118691. [56] DING M, ZHOU J J, YANG H C, et al. Synthesis of Z-scheme g-C3N4 nanosheets/Ag3PO4 photocatalysts with enhanced visible-light photocatalytic performance for the degradation of tetracycline and dye[J]. Chinese Chemical Letters, 2020, 31(1): 71-76. [57] CUI Q, LI X Y. Investigating the profit pollution abatement costs difference before and after the “carbon neutral growth from 2020” strategy was proposed[J]. Research in Transportation Economics, 2021, 90: 101120. [58] 王 鹏,阳 敏,汤森培,等.蜂窝状C3N4/CoSe2/GA复合光催化剂的制备及CO2还原性能[J].高等学校化学学报,2021,42(6):1924-1932. WANG P, YANG M, TANG S P, et al. Preparation of cellular C3N4/CoSe2/GA composite photocatalyst and its CO2 reduction activity[J]. Chemical Journal of Chinese Universities, 2021, 42(6): 1924-1932(in Chinese). [59] LU M F, LI Q Q, ZHANG C L, et al. Remarkable photocatalytic activity enhancement of CO2 conversion over 2D/2D g-C3N4/BiVO4 Z-scheme heterojunction promoted by efficient interfacial charge transfer[J]. Carbon, 2020, 160: 342-352. [60] CAO S W, LIU X F, YUAN Y P, et al. Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts[J]. Applied Catalysis B: Environmental, 2014, 147: 940-946. [61] LI M L, ZHANG L X, FAN X Q, et al. Core-shell LaPO4/g-C3N4 nanowires for highly active and selective CO2 reduction[J]. Applied Catalysis B: Environmental, 2017, 201: 629-635. [62] YANG Y, WU J J, XIAO T T, et al. Urchin-like hierarchical CoZnAl-LDH/RGO/g-C3N4 hybrid as a Z-scheme photocatalyst for efficient and selective CO2 reduction[J]. Applied Catalysis B: Environmental, 2019, 255: 117771. [63] GUO R T, LIU X Y, QIN H, et al. Photocatalytic reduction of CO2 into CO over nanostructure Bi2S3 quantum dots/g-C3N4 composites with Z-scheme mechanism[J]. Applied Surface Science, 2020, 500: 144059. [64] TAHIR B, TAHIR M, NAWAWI M G M. Highly stable 3D/2D WO3/g-C3N4 Z-scheme heterojunction for stimulating photocatalytic CO2 reduction by H2O/H2 to CO and CH4 under visible light[J]. Journal of CO2 Utilization, 2020, 41: 101270. |
[1] | 孟汝浩, 班新星, 左宏森, 李跃, 栗正新, 邵俊永, 孙冠男, 郝素叶, 韩少星, 张霖, 张国威, 周少杰. TiO2/g-C3N4复合粉体的制备及其在紫外/芬顿反应中光催化性能[J]. 人工晶体学报, 2022, 51(8): 1466-1472. |
[2] | 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. 双轴应变对g-ZnO/WS2异质结电子结构及光学性质影响的第一性原理计算[J]. 人工晶体学报, 2022, 51(7): 1202-1211. |
[3] | 王静怡, 张众, 王梓兰, 于鑫颖, 由君颐, 朱君怡, 杨琳. 吡啶鎓盐配体构筑的多钼酸基配合物的合成、结构及光催化性能[J]. 人工晶体学报, 2022, 51(7): 1227-1232. |
[4] | 张雷, 李瑞, 樊彩梅. Bi4O5Br2/Ti3C2-Ru复合光催化剂的合成及其对磺胺甲噁唑药物废水降解性能研究[J]. 人工晶体学报, 2022, 51(7): 1248-1256. |
[5] | 尹佳奇, 余春燕, 翟光美, 李天保, 张竹霞. 铟镓共掺杂对n-ZnO纳米棒/p-GaN异质结生长行为和光电性能的影响[J]. 人工晶体学报, 2022, 51(6): 1012-1019. |
[6] | 贾维海, 杨昆, 王智, 周庭艳, 黄海深, 吴波. 完全Heusler合金Cr2ZrSb/Sc2FeSn(100)异质结的结构、电磁特性及电子性质[J]. 人工晶体学报, 2022, 51(6): 1020-1027. |
[7] | 秦英恋, 秦建芳. 基于构象灵活的N-杂环配体构筑的3D拟卤化亚铜配合物的合成、结构和性质研究[J]. 人工晶体学报, 2022, 51(6): 1059-1068. |
[8] | 杨江涛, 李璇, 陈泽红, 张蔚, 王忠德. Ti/SnO2-IrO2电极的制备及其电化学降解对氯苯酚[J]. 人工晶体学报, 2022, 51(6): 1076-1084. |
[9] | 杜康, 寇丽芳, 张小超. EDTA辅助水热法合成BiYO3及其高效光还原CO2性能研究[J]. 人工晶体学报, 2022, 51(6): 1085-1091. |
[10] | 庞国旺, 刘晨曦, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能, 汤哲. 非金属元素(F, S, Se, Te)掺杂对ZnO/graphene肖特基界面电荷及肖特基调控的理论研究[J]. 人工晶体学报, 2022, 51(4): 628-636. |
[11] | 朱丽, 夏杨雯, 何莉莉, 朱晓东. 水热法制备银修饰混晶二氧化钛及其光催化性能研究[J]. 人工晶体学报, 2022, 51(4): 673-678. |
[12] | 白雅楠, 吕燕伍. ε-(AlxGa1-x)2O3/ε-Ga2O3异质结电子输运性质研究[J]. 人工晶体学报, 2022, 51(3): 441-449. |
[13] | 刘晨曦, 潘多桥, 庞国旺, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. X/g-C3N4(X=g-C3N4、AlN及GaN)异质结光催化活性的理论研究[J]. 人工晶体学报, 2022, 51(3): 450-458. |
[14] | 梁志华, 谭秋红, 王前进, 刘应开. GeS/MoS2异质结电子结构及光学性能的第一性原理研究[J]. 人工晶体学报, 2022, 51(3): 459-470. |
[15] | 石明凤, 顾江红, 卢森源, 徐中轩. 两个基于2,5-二甲氧基对苯二甲酸和咪唑衍生物的超分子钴配位聚合物的结构及光催化反应[J]. 人工晶体学报, 2022, 51(3): 485-492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||