[1] IRENA. Global energy transformation: A roadmap to 2050 (2019 edition)[DB/OL]. 2019. https://www.irena.org/publications. [2] BLAKERS A. Development of the PERC solar cell[J]. IEEE Journal of Photovoltaics, 2019, 9(3): 629-635. [3] CUEVAS A, LUQUE A, EGUREN J, et al. High efficiency bifacial back surface field solar cells[J]. Solar Cells, 1981, 3(4): 337-340. [4] HÜBNER A, ABERLE A G, HEZEL R. Novel cost-effective bifacial silicon solar cells with 19.4% front and 18.1% rear efficiency[J]. Applied Physics Letters, 1997, 70(8): 1008-1010. [5] YOSHIKAWA K, KAWASAKI H, YOSHIDA W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%[J]. Nature Energy, 2017, 2: 17032. [6] SCHMIDT J, PEIBST R, BRENDEL R. Surface passivation of crystalline silicon solar cells: present and future[J]. Solar Energy Materials and Solar Cells, 2018, 187: 39-54. [7] RICHTER A, HERMLE M, GLUNZ S W. Reassessment of the limiting efficiency for crystalline silicon solar cells[J]. IEEE Journal of Photovoltaics, 2013, 3(4): 1184-1191. [8] RICHTER A, BENICK J, FELDMANN F, et al. n-type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation[J]. Solar Energy Materials and Solar Cells, 2017, 173: 96-105. [9] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (Version 58)[J]. Progress in Photovoltaics: Research and Applications, 2021, 29(7): 657-667. [10] HAASE F, HOLLEMANN C, SCHÄFER S, et al. Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 186: 184-193. [11] RICHTER A, MüLLER R, BENICK J, et al. Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses[J]. Nature Energy, 2021, 6(4): 429-438. [12] CHEN D M, CHEN Y F, WANG Z G, et al. 24.58% total area efficiency of screen-printed, large area industrial silicon solar cells with the tunnel oxide passivated contacts (i-TOPCon) design[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110258. [13] PV-magazine. JinkoSolar sets new record for n-type solar cell efficiency. JinkoSolar sets new record for n-type solar cell efficiency-pv magazine International (pv-magazine.com), 2021. [14] 中国科学院宁波材料所. 25.53%!中科院宁波材料所新型TOPCon电池实现新突破[EB/OL].[2021-11-13]. https://www.sohu.com/a/500822817_595960. Ningbo Institute of materials, Chinese Academy of Sciences. 25.53%! New breakthrough of novel TOPCon cells in Ningbo Institute of Materials, Chinese Academy of Sciences[EB/OL].[2021-11-13]. https://www.sohu.com/a/500822817_595960(in Chinese). [15] BAYERL P, FOLCHERT N, BAYER J, et al. Contacting a single nanometer-sized pinhole in the interfacial oxide of a poly-silicon on oxide (POLO) solar cell junction[J]. Progress in Photovoltaics: Research and Applications, 2021, 29(8): 936-942. [16] GAN J Y, SWANSON R M. Polysilicon emitters for silicon concentrator solar cells[C]//IEEE Conference on Photovoltaic Specialists. May 21-25, 1990, Kissimmee, FL, USA. IEEE, 1990: 245-250. [17] AJURIA S A, REIF R. Early stage evolution kinetics of the polysilicon/single-crystal silicon interfacial oxide upon annealing[J]. Journal of Applied Physics, 1991, 69(2): 662-667. [18] STUCKELBERGER J, YAN D, PHENG PHANG S, et al. Impact of pre-annealing on industrially LPCVD deposited poly Si hole-selective contacts[C].Asia Pacific Solar research conference, 2020. [19] KALE A S, NEMETH W, GUTHREY H, et al. Understanding the charge transport mechanisms through ultrathin SiOx layers in passivated contacts for high-efficiency silicon solar cells[J]. Applied Physics Letters, 2019, 114(8): 083902. [20] GUTHREY H, LIMA SALLES C, KALE A S, et al. Effect of surface texture on pinhole formation in SiOx-based passivated contacts for high-performance silicon solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 55737-55745. [21] FOLCHERT N, RIENÄCKER M, YEO A A, et al. Temperature-dependent contact resistance of carrier selective poly-Si on oxide junctions[J]. Solar Energy Materials and Solar Cells, 2018, 185: 425-430. [22] GALLENI L, FIRAT M, RADHAKRISHNAN H S, et al. Mechanisms of charge carrier transport in polycrystalline silicon passivating contacts[J]. Solar Energy Materials and Solar Cells, 2021, 232: 111359. [23] PEIBST R, RÖMER U, LARIONOVA Y, et al. Working principle of carrier selective poly-Si/c-Si junctions: is tunnelling the whole story? [J]. Solar Energy Materials and Solar Cells, 2016, 158: 60-67. [24] CUEVAS A, MACDONALD D. Measuring and interpreting the lifetime of silicon wafers[J]. Solar Energy, 2004, 76(1/2/3): 255-262. [25] BRENDEL R, RIENAECKER M, PEIBST R. A quantitative measure for the carrier selectivity of contacts to solar cells[C]. in Proceedings 32nd European Photovoltaic Solar Energy Conference and Exhibition, 2016, 447-451. [26] ALLEN T G, BULLOCK J, YANG X, et al. Passivating contacts for crystalline silicon solar cells[J]. Nature Energy, 2019, 4(11): 914-928. [27] YAN D, CUEVAS A, BULLOCK J, et al. Phosphorus-diffused polysilicon contacts for solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 142: 75-82. [28] YAN D, CUEVAS A, WAN Y M, et al. Silicon nitride/silicon oxide interlayers for solar cell passivating contacts based on PECVD amorphous silicon[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2015, 9(11): 617-621. [29] BILAL B, NAJEEB-UD-DIN H. Fundamentals of and recent advances in carrier selective passivating contacts for silicon solar cells[J]. Journal of Electronic Materials, 2021, 50(7): 3761-3772. [30] KOBAYASHI ASUHA H, MAIDA O, TAKAHASHI M, et al. Nitric acid oxidation of Si to form ultrathin silicon dioxide layers with a low leakage current density[J]. Journal of Applied Physics, 2003, 94(11): 7328-7335. [31] TONG H, LIAO M D, ZHANG Z, et al. A strong-oxidizing mixed acid derived high-quality silicon oxide tunneling layer for polysilicon passivated contact silicon solar cell[J]. Solar Energy Materials and Solar Cells, 2018, 188: 149-155. [32] MOLDOVAN A, FELDMANN F, ZIMMER M, et al. Tunnel oxide passivated carrier-selective contacts based on ultra-thin SiO2 layers[J]. Solar Energy Materials and Solar Cells, 2015, 142: 123-127. [33] SACHS E, PRUEGER G, GUERRIERI R. An equipment model for polysilicon LPCVD[J]. IEEE Transactions on Semiconductor Manufacturing, 1992, 5(1): 3-13. [34] NANDAKUMAR N, RODRIGUEZ J, KLUGE T, et al. Approaching 23% with large-area monoPoly cells using screen-printed and fired rear passivating contacts fabricated by inline PECVD[J]. Progress in Photovoltaics: Research and Applications, 2019, 27(2): 107-112. [35] MOUSUMI J F, ALI H, GREGORY G, et al. Phosphorus-doped polysilicon passivating contacts deposited by atmospheric pressure chemical vapor deposition[J]. Journal of Physics D: Applied Physics, 2021, 54(38): 384003. [36] LI S H, POMASKA M, HOß J, et al. In situ-doped silicon thin films for passivating contacts by hot-wire chemical vapor deposition with a high deposition rate of 42 nm/min[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 30493-30499. [37] YAN D, CUEVAS A, PHANG S P, et al. 23% efficient p-type crystalline silicon solar cells with hole-selective passivating contacts based on physical vapor deposition of doped silicon films[J]. Applied Physics Letters, 2018, 113(6): 061603. [38] LOSSEN J, HOß J, EISERT S, et al. Electron beam evaporation of silicon for polysilicon/SiO2 passivated contacts[C]. In 35th European Photovoltaic Solar Energy Conference and Exhibition, 2018, 418-421. [39] DAVID L, HüBNER S, MIN B, et al. Fired-only passivating poly-Si on oxide contacts with DC-sputtered in-situ phosphorous-doped silicon layers[C]. 37th European Photovoltaic Solar Energy Conference and Exhibition, 2020. [40] VAN DE LOO B W H, MACCO B, SCHNABEL M, et al. On the hydrogenation of poly-Si passivating contacts by Al2O3 and SiNx thin films[J]. Solar Energy Materials and Solar Cells, 2020, 215: 110592. [41] çIFTPINAR H E, STODOLNY M K, WU Y, et al. Study of screen printed metallization for polysilicon based passivating contacts[J]. Energy Procedia, 2017, 124: 851-861. [42] 张天杰,刘大伟,倪玉凤,等.基于载流子选择性接触的N型晶硅电池钝化特性研究[J].人工晶体学报,2020,49(9):1631-1635+1645. ZHANG T J, LIU D W, NI Y F, et al. Passivation characteristics of N-type crystal silicon cell based on carrier selective contact[J]. Journal of Synthetic Crystals, 2020, 49(9): 1631-1635+1645(in Chinese). [43] LARIONOVA Y, SCHULTE-HUXEL H, MIN B, et al. Ultra-thin poly-Si layers: passivation quality, utilization of charge carriers generated in the poly-Si and application on screen-printed double-side contacted polycrystalline Si on oxide cells[J]. Solar RRL, 2020, 4(10): 2000177. [44] REITER S, KOPER N, REINEKE-KOCH R, et al. Parasitic absorption in polycrystalline Si-layers for carrier-selective front junctions[J]. Energy Procedia, 2016, 92: 199-204. [45] PADHAMNATH P, KHANNA A, NANDAKUMAR N, et al. Development of thin polysilicon layers for application in monoPolyTM cells with screen-printed and fired metallization[J]. Solar Energy Materials and Solar Cells, 2020, 207: 110358. [46] FELDMANN F, NICOLAI M, MüLLER R, et al. Optical and electrical characterization of poly-Si/SiOx contacts and their implications on solar cell design[J]. Energy Procedia, 2017, 124: 31-37. [47] INGENITO A, LIMODIO G, PROCEL P, et al. Silicon solar cell architecture with front selective and rear full area ion-implanted passivating contacts[J]. Solar RRL, 2017, 1(7): 1700040. [48] XU G C, DENG M Z, CHEN S, et al. 25% cell efficiency with integration of passivating contact technology and interdigitated back contact structure on 6"wafers[C]//2019 IEEE 46th Photovoltaic Specialists Conference. June 16-21, 2019, Chicago, IL, USA. IEEE, 2019: 1452-1455. [49] MIHAILETCHI V D, CHU H F, LOSSEN J, et al. Surface passivation of boron-diffused junctions by a borosilicate glass and in situ grown silicon dioxide interface layer[J]. IEEE Journal of Photovoltaics, 2018, 8(2): 435-440. [50] JAIN A, CHOI W J, HUANG Y Y, et al. Design, optimization, and in-depth understanding of front and rear junction double-side passivated contacts solar cells[C]//IEEE Journal of Photovoltaics. IEEE,: 1141-1148. [51] LI Y P, YE F, LIU Y Q, et al. Research of annealing and boron doping on SiOx/p-poly-Si hole-selective passivated contact[J]. IEEE Journal of Photovoltaics, 2020, 10(6): 1552-1556. [52] GREEN M. Silicon solar cells: advanced principles and practice[M]. Sydney: Centre for Photovoltaic Devices and Systems, 1995 [53] YAN D, CUEVAS A, MICHEL J I, et al. Polysilicon passivated junctions: the next technology for silicon solar cells? [J]. Joule, 2021, 5(4): 811-828. [54] KRUSE C N, SCHÄFER S, HAASE F, et al. Simulation-based roadmap for the integration of poly-silicon on oxide contacts into screen-printed crystalline silicon solar cells[J]. Scientific Reports, 2021, 11: 996. [55] ENGELHARDT J, FREY A, FRITZ S, et al. Contact formation on boron doped silicon substrates from passivating PECV-deposited dielectric doping layers with anti-reflective properties by screen-printing Ag pastes for high-efficiency n-type silicon solar cells[C]. 31 st European Photovoltaic Solar Energy Conference and Exhibition, 2015, 351-354. [56] LOHMÜLLER (NÉE WERNER) S, LOHMüLLER E. Advanced BBr3 diffusion with second deposition step for selective emitter formation by laser doping[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2018, 12(7): 1700442. [57] DULLWEBER T, STÖHR M, KRUSE C, et al. Evolutionary PERC+ solar cell efficiency projection towards 24% evaluating shadow-mask-deposited poly-Si fingers below the Ag front contact as next improvement step[J]. Solar Energy Materials and Solar Cells, 2020, 212: 110586. [58] MACK S, HERRMANN D, LENES M, et al. Progress in p-type tunnel oxide-passivated contact solar cells with screen-printed contacts[J]. Solar RRL, 2021, 5(5): 2100152. [59] YU B, SHI J C, LI F, et al. Selective tunnel oxide passivated contact on the emitter of large-size n-type TOPCon bifacial solar cells[J]. Journal of Alloys and Compounds, 2021, 870: 159679. [60] NOGAY G, STUCKELBERGER J, WYSS P, et al. Interplay of annealing temperature and doping in hole selective rear contacts based on silicon-rich silicon-carbide thin films[J]. Solar Energy Materials and Solar Cells, 2017, 173: 18-24. [61] KÖHLER M, POMASKA M, LENTZ F, et al. Wet-chemical preparation of silicon tunnel oxides for transparent passivated contacts in crystalline silicon solar cells[J]. ACS Applied Materials & Interfaces, 2018, 10(17): 14259-14263. [62] LARIONOVA Y, SCHULTE-HUXEL H, MIN B, et al. Screen printed double-side contacted POLO-cells with ultra-thin poly-Si layers and different transparent conductive oxides[C].36th European Photovoltaic Solar Energy Conference and Exhibition, 2019, 172-175. [63] WANG Q Q, WU W P, CHEN D M, et al. Study on the cleaning process of n+-poly-Si wraparound removal of TOPCon solar cells[J]. Solar Energy, 2020, 211: 324-335. |