[1] JEITSCHKO W, NOWOTNY H, BENESOVSKY F. Die H-phasen Ti2 InC, Zr2 InC, Hf2 InC und Ti2 GeC[J]. Monatshefte Für Chemie, 1963, 94(6): 1201-1205. [2] BARSOUM M. A new class of solids: thermodynamically stable nanolaminates [J]. Progress in Solid State Chemistry, 2000, 28(1): 201. [3] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides[J]. ACS Nano, 2012, 6(2): 1322-1331. [4] ER D Q, LI J W, NAGUIB M, et al. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(14): 11173-11179. [5] FU L, XIA W. MAX phases as nanolaminate materials: chemical composition, microstructure, synthesis, properties, and applications[J]. Advanced Engineering Materials, 2021, 23(4): 2001191. [6] 李丹丹,胡前库,张 斌,等.基于新元素和新多层结构的MAX相陶瓷材料研究进展[J].人工晶体学报,2021,50(12):2379-2388. LI D D, HU Q K, ZHANG B, et al. Research progress of MAX phase ceramic materials based on new elements and new multilayer structures[J]. Journal of Synthetic Crystals, 2021, 50(12): 2379-2388(in Chinese). [7] SUN Z M. Progress in research and development on MAX phases: a family of layered ternary compounds[J]. International Materials Reviews, 2011, 56(3): 143-166. [8] 李 良,周爱国.Ti3SiC2复合材料的研究进展[J].硅酸盐通报,2011,30(5):1114-1117+1141. LI L, ZHOU A G. Research progress of Ti3SiC2 composites[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(5): 1114-1117+1141(in Chinese). [9] 周爱国.三元层状陶瓷MAX相的非线性弹性研究[J].硅酸盐通报,2009,28(4):709-713. ZHOU A G. Research of nonlinear elastic deformation of MAX phases[J]. Bulletin of the Chinese Ceramic Society, 2009, 28(4): 709-713(in Chinese). [10] HAJAS D E, BABEN M T, HALLSTEDT B, et al. Oxidation of Cr2AlC coatings in the temperature range of 1 230 to 1 410 ℃[J]. Surface and Coatings Technology, 2011, 206(4): 591-598. [11] TALLMAN D J, ANASORI B, BARSOUM M W. A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air[J]. Materials Research Letters, 2013, 1(3): 115-125. [12] FENG Z J, KE P L, HUANG Q, et al. The scaling behavior and mechanism of Ti2AlC MAX phase coatings in air and pure water vapor[J]. Surface and Coatings Technology, 2015, 272: 380-386. [13] TALLMAN D J, HE L F, GARCIA-DIAZ B L, et al. Effect of neutron irradiation on defect evolution in Ti3SiC2 and Ti2AlC[J]. Journal of Nuclear Materials, 2016, 468: 194-206. [14] WANG C, YANG T, TRACY C L, et al. Disorder in Mn+1AXn phases at the atomic scale[J]. Nature Communications, 2019, 10: 622. [15] RESTER M, NEIDHARDT J, EKLUND P, et al. Annealing studies of nanocomposite Ti-Si-C thin films with respect to phase stability and tribological performance[J]. Materials Science and Engineering: A, 2006, 429(1/2): 90-95. [16] ZHANG J, WANG J Y, ZHOU Y C. Structure stability of Ti3AlC2 in Cu and microstructure evolution of Cu-Ti3AlC2 composites[J]. Acta Materialia, 2007, 55(13): 4381-4390. [17] WANG D D, TIAN W B, MA A B, et al. Anisotropic properties of Ag/Ti3AlC2 electrical contact materials prepared by equal channel angular pressing[J]. Journal of Alloys and Compounds, 2019, 784: 431-438. [18] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253. [19] HADI M A, ALI M S, NAQIB S H, et al. Band structure, hardness, thermodynamic and optical properties of superconducting Nb2AsC, Nb2InC and Mo2GaC[J]. International Journal of Computational Materials Science and Engineering, 2013, 2(2): 1350007. [20] HADI M A, RAYHAN M A, NAQIB S H, et al. Structural, elastic, thermal and lattice dynamic properties of new 321 MAX phases[J]. Computational Materials Science, 2019, 170: 109144. [21] XU Q, ZHOU Y C, ZHANG H M, et al. Theoretical prediction, synthesis, and crystal structure determination of new MAX phase compound V2SnC[J]. Journal of Advanced Ceramics, 2020, 9(4): 481-492. [22] ZHU J F, GAO J Q, YANG J F, et al. Synthesis and microstructure of layered-ternary Ti2AlC ceramic by high energy milling and hot pressing[J]. Materials Science and Engineering: A, 2008, 490(1/2): 62-65. [23] GAUTHIER-BRUNET V, CABIOC’H T, CHARTIER P, et al. Reaction synthesis of layered ternary Ti2AlC ceramic[J]. Journal of the European Ceramic Society, 2009, 29(1): 187-194. [24] TIAN W B, SUN Z M, DU Y L, et al. Synthesis reactions of Cr2AlC from Cr-Al4C3-C by pulse discharge sintering[J]. Materials Letters, 2008, 62(23): 3852-3855. [25] RACAULT C, LANGLAIS F, NASLAIN R. Solid-state synthesis and characterization of the ternary phase Ti3SiC2[J]. Journal of Materials Science, 1994, 29(13): 3384-3392. [26] SCHNEIDER J M, SUN Z M, MERTENS R, et al. Ab initio calculations and experimental determination of the structure of Cr2AlC[J]. Solid State Communications, 2004, 130(7): 445-449. [27] ŁOPACINSKI M, PUSZYNSKI J, LIS J. Synthesis of ternary titanium aluminum carbides using self-propagating high-temperature synthesis technique[J]. Journal of the American Ceramic Society, 2001, 84(12): 3051-3053. [28] YEH C L, SHEN Y G. Effects of using Al4C3 as a reactant on formation of Ti3AlC2 by combustion synthesis in SHS mode[J]. Journal of Alloys and Compounds, 2009, 473(1/2): 408-413. [29] YANG C, JIN S Z, LIANG B Y, et al. Synthesis of Ti3AlC2 ceramic by high-energy ball milling of elemental powders of Ti, Al and C[J]. Journal of Materials Processing Technology, 2009, 209(2): 871-875. [30] HAMM C M, SCHÄFER T, ZHANG H B, et al. Non-conventional synthesis of the 413 MAX phase V4AlC3[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2016, 642(23): 1397-1401. [31] TIAN W B, WANG P L, KAN Y M, et al. Cr2AlC powders prepared by molten salt method[J]. Journal of Alloys and Compounds, 2008, 461(1/2): L5-L10. [32] LIU A M, YANG Q Y, REN X F, et al. Energy-and cost-efficient NaCl-assisted synthesis of MAX-phase Ti3AlC2 at lower temperature[J]. Ceramics International, 2020, 46(5): 6934-6939. [33] WANG B X, ZHOU A G, HU Q K, et al. Synthesis and oxidation resistance of V2AlC powders by molten salt method[J]. International Journal of Applied Ceramic Technology, 2017, 14(5): 873-879. [34] GUO X, WANG J X, YANG S Y, et al. Preparation of Ti3SiC2 powders by the molten salt method[J]. Materials Letters, 2013, 111: 211-213. [35] GALVIN T, HYATT N C, RAINFORTH W M, et al. Molten salt synthesis of MAX phases in the Ti-Al-C system[J]. Journal of the European Ceramic Society, 2018, 38(14): 4585-4589. [36] ZHONG Y, LIU Y, YE J W, et al. Molten salt synthesis and formation mechanisms of ternary V-based MAX phases by V-Al alloy strategy[J]. Journal of the American Ceramic Society, 2022, 105(3): 2277-2287. [37] LI Y B, QIN Y Q, CHEN K, et al. Molten salt synthesis of nanolaminated Sc2SnC MAX phase[J]. Journal of Inorganic Materials, 2021, 36(7): 773. [38] LI Y B, MA G L, SHAO H, et al. Electrochemical lithium storage performance of molten salt derived V2SnC MAX phase[J]. Nano-Micro Letters, 2021, 13(1): 1-10. [39] DASH A, VAßEN R, GUILLON O, et al. Molten salt shielded synthesis of oxidation prone materials in air[J]. Nature Materials, 2019, 18(5): 465-470. [40] DASH A, SOHN Y J, VAßEN R, et al. Synthesis of Ti3SiC2 MAX phase powder by a molten salt shielded synthesis (MS3) method in air[J]. Journal of the European Ceramic Society, 2019, 39(13): 3651-3659. [41] BADIE S, DASH A, SOHN Y J, et al. Synthesis, sintering, and effect of surface roughness on oxidation of submicron Ti2AlC ceramics[J]. Journal of the American Ceramic Society, 2021, 104(4): 1669-1688. [42] ROY C, BANERJEE P, BHATTACHARYYA S. Molten salt shielded synthesis (MS3) of Ti2AlN and V2AlC MAX phase powders in open air[J]. Journal of the European Ceramic Society, 2020, 40(3): 923-929. [43] BÄRMANN P, HANEKE L, WROGEMANN J M, et al. Scalable synthesis of MAX phase precursors toward titanium-based MXenes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(22): 26074-26083. [44] LI M, LU J, LUO K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society, 2019, 141(11): 4730-4737. [45] LI Y B, LI M, LU J, et al. Single-atom-thick active layers realized in nanolaminated Ti3 (AlxCu1-x)C2 and its artificial enzyme behavior[J]. ACS Nano, 2019, 13(8): 9198-9205. [46] DING H M, LI Y B, LU J, et al. Synthesis of MAX phases Nb2CuC and Ti2(Al0.1Cu0.9)N by A-site replacement reaction in molten salts[J]. Materials Research Letters, 2019, 7(12): 510-516. [47] GOU B B, WANG L L, YE B, et al. Low-temperature synthesis of pure-phase Ti3(Al, Fe)C2 solid solution with magnetic monoatomic layers by replacement reaction[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(10): 13081-13088. [48] YANG T, CHEN Q Y, LI X H, et al. Low-temperature synthesis of Ti3Al(Sn)C2 solid solution using replacement reaction[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(22): 20601-20610. [49] YEH C L, CHIANG C H. Combustion synthesis of MAX phase solid solution Ti3(Al, Sn)C2[J]. Nano Hybrids and Composites, 2017, 16: 73-76. [50] XU H, HUANG Z Y, ZHAI H X, et al. Fabrication, mechanical properties, and tribological behaviors of Ti3Al0.8Sn0.4C2 solid solution by two-time hot-pressing method[J]. International Journal of Applied Ceramic Technology, 2015, 12(4): 783-789. [51] LI Y B, LU J, LI M, et al. Multielemental single-atom-thick a layers in nanolaminated V2(Sn, A)C (A=Fe, Co, Ni, Mn) for tailoring magnetic properties[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(2): 820-825. [52] MA G, SHAO H, XU J, et al. Li-ion storage properties of two-dimensional titanium-carbide synthesized via fast one-pot method in air atmosphere[J]. Nature Communications, 2021, 12: 5085. [53] ABDELKADER A M, KILBY K T, COX A, et al. DC voltammetry of electro-deoxidation of solid oxides[J]. Chemical Reviews, 2013, 113(5): 2863-2886. [54] HYSLOP D J S, ABDELKADER A M, COX A, et al. Utilization of constant current chronopotentiometry to synthesize a Co-Cr alloy[J]. Journal of the Electrochemical Society, 2010, 157(7): E111. [55] SUN L, SONG Q S, XU Q, et al. The electrochemical synthesis of TiC reinforced Fe based composite powder from titanium-rich slag[J]. New Journal of Chemistry, 2015, 39(6): 4391-4397. [56] ABDELKADER A M, FRAY D J. Electrochemical synthesis of hafnium carbide powder in molten chloride bath and its densification[J]. Journal of the European Ceramic Society, 2012, 32(16): 4481-4487. [57] ABDELKADER A M. Molten salts electrochemical synthesis of Cr2AlC[J]. Journal of the European Ceramic Society, 2016, 36(1): 33-42. [58] LI S S, ZOU X L, XIONG X L, et al. Electrosynthesis of Ti3AlC2 from oxides/carbon precursor in molten calcium chloride[J]. Journal of Alloys and Compounds, 2018, 735: 1901-1907. [59] LIU P J, HOU Z R, HU M J, et al. Electro-synthesis of ultrafine V2AlC MAX-phase and its conversion process towards two-dimensional V2CTX[J]. Journal of the Electrochemical Society, 2020, 167(12): 122501. [60] PANG Z Y, ZOU X L, LI S S, et al. Molten salt electrochemical synthesis of ternary carbide Ti3AlC2 from titanium-rich slag[J]. Advanced Engineering Materials, 2020, 22(5): 1901300. |