人工晶体学报 ›› 2022, Vol. 51 ›› Issue (6): 951-964.
• 封面文章 • 下一篇
郑嘉茜1,2, 陈俊锋1,3, 李翔1, 卢保奇2, 冯鹤2
收稿日期:
2022-02-23
出版日期:
2022-06-15
发布日期:
2022-07-18
通讯作者:
陈俊锋,副研究员。E-mail:jfchen@mail.sic.ac.cn
作者简介:
郑嘉茜(1996—),女,江苏省人,硕士研究生。E-mail:jiaqian_zheng@126.com;陈俊锋(1979—),中国科学院上海硅酸盐研究所项目研究员,先进辐射探测晶体与器件课题组副组长,硕士研究生导师。从事无机闪烁晶体和有机-无机复合闪烁体的组成-结构-性能、可控制备、性能表征、元器件开发和应用等研究和工程产业化工作,研制的大尺寸和高性能BGO闪烁晶体规模应用于“悟空”号卫星(DAMPE)、锦屏深地核天体物理实验装置(JUNA)、核医学成像、资源勘探和工业检测等领域。近期,率先在超快BaF2单晶中发现了钇掺杂的慢成分抑制效应,制备出高能物理应用尺度的大尺寸钇掺杂BaF2单晶。承担国家自然科学基金项目、中科院先导专项课题、上海张江专项重点项目和上海市高新技术领域项目等10多项研究工作,已发表学术论文30余篇,申请发明专利11项(已授权8件,含国际专利1件),制定国家、行业、团体和企业标准9项。任《人工晶体学报》和《稀土》期刊青年编委,中国晶体学会-晶体应用与产业分会理事、中国光学学会-光学材料专家委员会青年委员、“国家新材料测试评价平台-先进无机非金属材料行业中心”技术专家。
基金资助:
ZHENG Jiaqian1,2, CHEN Junfeng1,3, LI Xiang1, LU Baoqi2, FENG He2
Received:
2022-02-23
Online:
2022-06-15
Published:
2022-07-18
摘要: 高能物理强度前沿装置、飞行时间技术正电子发射断层扫描、超高频辐射成像和正电子湮灭寿命谱分析等应用对闪烁体的时间响应提出了更高的要求,发展超快衰减闪烁体已成为研究热点之一。氟化钡晶体是一种具有亚纳秒级快闪烁成分的独特无机闪烁体,但其衰减时间约0.6 μs的慢闪烁发光成分会在高计数率应用时引起严重的信号堆积。作为一种抑制慢闪烁成分的有效途径,氟化钡晶体慢闪烁成分抑制的掺杂研究在过去三十年受到持续关注。本文回顾了掺杂抑制氟化钡晶体慢闪烁成分的研究历史,提出了掺杂元素选择的基本原则,重点介绍稀土金属(La、Y、Lu和Sc)、碱土金属(Mg、Sr)、过渡金属(Cd)和碱金属(K)等掺杂的慢闪烁成分抑制特性、内在机理和应用研究情况,并展望了所面临的挑战与机遇。
中图分类号:
郑嘉茜, 陈俊锋, 李翔, 卢保奇, 冯鹤. 掺杂抑制氟化钡晶体慢闪烁成分研究进展[J]. 人工晶体学报, 2022, 51(6): 951-964.
ZHENG Jiaqian, CHEN Junfeng, LI Xiang, LU Baoqi, FENG He. Research Progress on Suppression of Slow Scintillation Component in Barium Fluoride Crystal by Doping[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(6): 951-964.
[1] PEZZULLO G, BUDAGOV J, CAROSI R, et al. Progress status for the Mu2e calorimeter system[J]. Journal of Physics: Conference Series, 2015, 587: 012047. [2] WANG Z H, GUARDINCERRI E, RATHMAN D D, et al. Gigahertz (GHz) hard X-ray imaging using fast scintillators[C]//SPIE Optical Engineering+Applications. Proc SPIE 8852, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XV, San Diego, California, USA. 2013, 8852: 192-204. [3] YANG F, CHEN J F, ZHANG L Y, et al. La-and La-/ Ce-doped BaF2 crystals for future HEP experiments at the energy and intensity frontiers part I[J]. IEEE Transactions on Nuclear Science, 2019, 66(1): 506-511. [4] ZHU R Y. Ultrafast and radiation hard inorganic scintillators for future HEP experiments[J]. Journal of Physics: Conference Series, 2019, 1162: 012022. [5] YIN Y R, WANG G J, JIA Z T, et al. Controllable and directional growth of Er∶Lu2O3 single crystals by the edge-defined film-fed technique[J]. CrystEngComm, 2020, 22(39): 6569-6573. [6] ERMIS E E, CELIKTAS C. Effects of the positions of scintillation detectors with fast scintillators and photomultiplier tubes on TOF-PET performance[J]. Pramana, 2020, 94(1): 1-9. [7] LECOQ P, MOREL C, PRIOR J O, et al. Roadmap toward the 10 ps time-of-flight PET challenge[J]. Physics in Medicine and Biology, 2020, 65(21): 21RM01. [8] GUNDACKER S, MARTINEZ TURTOS R, KRATOCHWIL N, et al. Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission[J]. Physics in Medicine and Biology, 2020, 65(2): 025001. [9] HU C, ZHANG L Y, ZHU R Y, et al. Ultrafast inorganic scintillator-based front imager for Gigahertz hard X-ray imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 940: 223-229. [10] VAN EIJK C W E. Cross-luminescence[J]. Journal of Luminescence, 1994, 60/61: 936-941. [11] RODNYI P, GARIBIN E, VENEVTSEV I, et al. The application of barium fluoride luminescence: challenges and prospects[J]. St Petersburg Polytechnical State University Journal: Physics and Mathematics, 2019, 12(1): 9-24. [12] LAVAL M, MOSZYN'SKI M, ALLEMAND R, et al. Barium fluoride: inorganic scintillator for subnanosecond timing: nuclear Instruments and Methods in Physics Research, 1983, 206(1/2): 169-176. [13] SCHOTANUS P, VAN EIJK C W E, HOLLANDER R W, et al. Development study of a new gamma camera[J]. IEEE Transactions on Nuclear Science, 1987, 34(1): 271-276. [14] GUNDACKER S, POTS R H, NEPOMNYASHCHIKH A, et al. Vacuum ultraviolet silicon photomultipliers applied to BaF2 cross-luminescence detection for high-rate ultrafast timing applications[J]. Physics in Medicine & Biology, 2021, 66(11): 114002. [15] ALEKSANDROV Y M, MAKHOV V N, RODNYI P A, et al. Intrinsic luminescence of BaF2 on the pulse excitation by synchrotron radiation[J]. Sov Phys Solid State, 1984, 26: 1734-1736. [16] VALBIS Y A, RACHKO Z A, YANSONS Y L. Short-wave UV luminescence of BaF2 crystals caused by crossover transitions[J]. Jetp Letters, 1985: 42. [17] ZHU R Y. Barium fluoride crystals for precision EMC at SSC[M]// Phyllis Hale. Supercollider 5. Boston: Springer, 1994: 411-414. [18] ZHU R Y. Crystal calorimeters in the next decade[J]. Physics Procedia, 2012, 37: 372-383. [19] TSCHIRHART R. The Mu2e experiment at fermilab[J]. Nuclear Physics B-Proceedings Supplements, 2011, 210/211: 245-248. [20] FARUKHI M R, SWINEHART C F. Barium fluoride as a gamma ray and charged particle detector[J]. IEEE Transactions on Nuclear Science, 1971, 18(1): 200-204. [21] SCHOTANUS P, VAN EIJK C W E, HOLLANDER R W, et al. Photoelectron production in BaF2-TMAE detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1987, 259(3): 586-588. [22] BEAUMONT J, HAYES W, KIRK D, et al. An investigation of trapped holes and trapped excitons in alkaline earth fluorides[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1970, 315(1520): 69-97. [23] WILLIAMS R T, KABLER M N, HAYES W, et al. Time-resolved spectroscopy of self-trapped excitons in fluorite crystals[J]. Physical Review B, 1976, 14(2): 725-740. [24] WOODY C L, LEVY P W, KIERSTEAD J A. Slow component suppression and radiation damage in doped BaF2/crystals[J]. IEEE Transactions on Nuclear Science, 1989, 36(1): 536-542. [25] VISVIKIS D, OTT R J, WELLS K, et al. Performance characterisation of large area BaF2-TMAE detectors for use in a whole body clinical PET camera[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 392(1/2/3): 414-420. [26] MEHTA S, NAYAK T K, BRAR L. Time of flight (TOF)-positron emission tomography (PET) imaging using 5-gap glass multi-gap resistive plate chambers (MRPCs)[D]. 2016 [27] BISWAS D C, VIND R P, KUMAR N, et al. Fission fragment velocity distribution measurement using time of flight technique[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 901: 76-83. [28] POTS R H, AUFFRAY E, GUNDACKER S. Exploiting cross-luminescence in BaF2 for ultrafast timing applications using deep-ultraviolet sensitive HPK silicon photomultipliers[J]. Frontiers in Physics, 2020, 8: 592875. [29] ZHANG L Y, HU C, OYANG J, et al. QE/PDE of VUV photodetectors for BaF2 readout[C]//2020 IEEE Nuclear Science Symposium and Medical Imaging Conference. October 31-November 7, 2020, Boston, MA, USA. IEEE, 2020: 1-2. [30] DEVOL T A. Evaluation of wavelength shifters for spectral separation of barium fluoride emissions[R]. Office of Scientific and Technical Information (OSTI), 1993. [31] 顾 牡,马晓辉,徐荣昆,等.加载光子带隙膜系BaF2晶体闪烁光慢成分抑制和抗γ辐照损伤的研究[J].强激光与粒子束,2005,17(1):42-46. GU M, MA X H, XU R K, et al. Slow component suppression and γ radiation hardness of BaF2 crystal modified by photonic band multilayer filter[J]. High Power Laser & Particle Beams, 2005, 17(1): 42-46(in Chinese). [32] 马晓辉,顾 牡,徐荣昆,等.抑制BaF2晶体闪烁光慢成分的选择吸收膜系的研究[J].无机材料学报,2004,19(3):666-670. MA X H, GU M, XU R K, et al. Metal/dielectric multilayers filter to suppress the slow component of the scintillation light in BaF2 crystal[J]. Journal of Inorganic Materials, 2004, 19(3): 666-670(in Chinese). [33] ARTIKOV A M, BARANOV V, BUDAGOV J A, et al. Suppression of the slow component of BaF2 crystal luminescence with a thin multilayer filter[J]. Journal of Physics: Conference Series, 2019, 1162: 012028. [34] 张子川,韩和同,管兴胤,等.基于反射滤光方法的氟化钡快响应γ射线探测技术[J].现代应用物理,2013,4(3):225-231. ZHANG Z C, HAN H T, GUAN X Y, et al. BaF2 detector with fast time response for γ-ray pulse measurement based on ultraviolet band-pass optical filter[J]. Modern Applied Physics, 2013, 4(3): 225-231(in Chinese). [35] BIASINI M, CASSIDY D B, DENG S H M, et al. Suppression of the slow component of scintillation light in BaF2[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 553(3): 550-558. [36] SCHOTANUS P, DORENBOS P, VAN EIJK C W E, et al. Suppression of the slow scintillation light output of BaF2 crystals by La3+ doping[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, 281(1): 162-166. [37] DORENBOS P, VISSER R, DOOL R, et al. Suppression of self-trapped exciton luminescence in La3+-and Nd3+-doped BaF2[J]. Journal of Physics: Condensed Matter, 1992, 4(23): 5281-5290. [38] REN S X, CHEN G, ZHANG F Y, et al. The effect of impurities on the radiation damage of Barium fluoride crystal[J]. MRS Proceedings, 1994, 348: 435. [39] VISSER R, DORENBOS P, EIJK CWE, et al. Scintillation properties of Ce3+ doped BaF2 crystals[J]. IEEE Transactions on Nuclear Science, 1991, 38(2): 127-131. [40] DORENBOS P, VISSER R, HOLLANDER R W, et al. The effects of La3+ and Ce3+ dopants on the scintillation properties of BaF2 crystals[J]. Radiation Effects and Defects in Solids, 1991, 119/120/121(1): 87-92. [41] GARIBIN E A, GAIN S D, GUSEV P E, et al. New scintillators based on barium fluoride crystals and ceramics[J]. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75(7): 1011-1014. [42] CHEN G, XIAO H, MAN S Q, et al. Radiation damage of rare earth ions doped barium fluoride crystals[M]// John Nonte. Supercollider 4. Boston: Springer, 1992: 809-815. [43] DROZDOWSKI W, WOJTOWICZ A J. Radiative recombination in BaF2∶Pr[J]. Journal of Alloys and Compounds, 2000, 300/301: 261-266. [44] WOJTOWICZ A J, SZUPRYCZYNSKI P, DROZDOWSKI W. Radiative recombination in Ce-, Pr-, and Tb-doped barium fluoride[J]. Journal of Alloys and Compounds, 2000, 300/301: 199-206. [45] RADZHABOV E, NAGIRNYI V. Excitation of Pr3+ions in alkaline-earth fluorides[J]. IOP Conference Series: Materials Science and Engineering, 2010, 15: 012029. [46] SHENDRIK R, RADZHABOV E, NAGIRNYI V. Time-resolved spectroscopy of 5d-4f transitions in Pr3+doped alkali-earth fluorides[J]. IOP Conference Series: Materials Science and Engineering, 2010, 15: 012083. [47] KAWAGUCHI N, YANAGIDA T, FUTAMI Y, et al. Nd concentration dependence on the optical and scintillation properties of Nd doped BaF2[J]. Optical Materials, 2010, 32(10): 1325-1328. [48] RADZHABOV E, NAGIRNYI V, KIRM M, et al. 5d-4f emission of Nd3+, Sm3+, Ho3+, Er3+, Tm3+ ions in alkaline earth fluorides[J]. IEEE Transactions on Nuclear Science, 2012, 59(5): 2074-2078. [49] 沈定中,刘建成,袁湘龙,等.BaF2∶Ce,La,Eu晶体的光谱性质[J].无机材料学报,1994,9(3):281-287. SHEN D Z, LIU J C, YUAN X L, et al. Spectra properties of BaF2∶Ce, La, Eu crystals[J]. Journal of Inorganic Materials, 1994, 9(3): 281-287(in Chinese). [50] FERRAZ G M, MATSUOKA M, WATANABE S, et al. Radiation effects on BaF2 crystals[J]. Radiation Effects and Defects in Solids, 1998, 146(1/2/3/4): 303-309. [51] KIRM M, STRYGANYUK G, VIELHAUER S, et al. Vacuum-ultraviolet 5d-4f luminescence of Gd3+and Lu3+ions in fluoride matrices[J]. Physical Review B, 2007, 75(7): 075111. [52] RADZHABOV E A, PROSEKINA E A. 5d-4f luminescence of Nd3+, Gd3+, Er3+, Tm3+, and Ho3+ ions in crystals of alkaline earth fluorides[J]. Optics and Spectroscopy, 2011, 111(3): 397-402. [53] ABE N, YOKOTA Y, YANAGIDA T, et al. Evaluation of gamma-ray response of Tm∶BaF2 single crystals[J]. IEEE Transactions on Nuclear Science, 2010, 57(3): 1304-1307. [54] SELIVERSTOV D M, DEMIDENKO A A, GARIBIN E A, et al. New fast scintillators on the base of BaF2 crystals with increased light yield of 0.9 ns luminescence for TOF PET[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 695: 369-372. [55] SHI G S, XIE Z J, DENG J, et al. Thermoluminescence of BaF2∶Re(Ce, Dy, Eu) crystals[J]. Journal of Electron Spectroscopy and Related Phenomena, 1996, 79: 87-90. [56] STEF M, NICOARA I, VIZMAN D. Distribution of Yb3+ and Yb2+ ions along YbF3-doped BaF2 crystals[J]. Crystal Research and Technology, 2018, 53(12): 1800186. [57] DOUALAN J L, CAMY P, BENAYAD A, et al. Spectroscopic and laser properties of Yb3+ doped CaF2, SrF2 and BaF2 laser crystals[C]//Advanced Solid-State Photonics. Nara. Washington, D.C.: OSA, 2008. [58] NESTERKINA V, SHIRAN N, GEKTIN A, et al. The Lu-doping effect on the emission and the coloration of pure and Ce-doped BaF2 crystals[J]. Radiation Measurements, 2007, 42(4/5): 819-822. [59] SOBOLEV B P, KRIVANDINA E A, DERENZO S E, et al. Suppression of BaF2 slow component of X-ray luminescence in non-stoichiometric Ba0.9R0.1F2.1 crystals (R=Rare earth element)[J]. MRS Proceedings, 1994, 348: 277. [60] RADZHABOV E, KIRM M, EGRANOV A, et al. Mechanism of exciton suppression in alkali-earth fluorides doped with La, Y, Cd[J]. Proc SCINT 2005, 2005: 60-63. [61] CHEN J F, YANG F, ZHANG L Y, et al. Slow scintillation suppression in yttrium doped BaF2 crystals[J]. IEEE Transactions on Nuclear Science, 2018, 65(8): 2147-2151. [62] HU C, XU C, ZHANG L Y, et al. Development of yttrium-doped BaF2 crystals for future HEP experiments[J]. IEEE Transactions on Nuclear Science, 2019, 66(7): 1854-1860. [63] HU C, ZHANG L Y, ZHU R Y, et al. BaF2∶Y and ZnO∶Ga crystal scintillators for GHz hard X-ray imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 950: 162767. [64] 王红锋,刘福雁,王英杰,等.掺钇BaF2闪烁探测器性能研究[J].核技术,2020,43(3):21-26. WANG H F, LIU F Y, WANG Y J, et al. Study on performance of Yttrium doped BaF2 scintillation detector[J]. Nuclear Techniques, 2020, 43(3): 21-26(in Chinese). [65] KOBAYASHI M, ISHII M, SOBOLEV B P, et al. Scintillation characteristics of nonstoichiometric phases formed in MF2-GdF3-CeF3 system Part I. (M=Ba), scintillation of Ba0.9Gd0.1-xCexF2.1 (0≤x≤0.1) fluorite-type crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 421(1/2): 180-190. [66] WOJTOWICZ A J, JANUS S, PIATKOWSKI D. Fast and efficient VUV/UV emissions from (Ba, La)F2∶Er crystals[J]. Journal of Luminescence, 2009, 129(12): 1594-1597. [67] YANG F, CHEN J F, ZHANG L Y, et al. La-and La-/Ce-doped BaF2 crystals for future HEP experiments at the energy and intensity frontiers part Ⅱ[J]. IEEE Transactions on Nuclear Science, 2019, 66(1): 512-518. [68] KUROSAWA S, YANAGIDA T, YOKOTA Y, et al. Crystal growth and scintillation properties of fluoride scintillators[J]. IEEE Transactions on Nuclear Science, 2012, 59(5): 2173-2176. [69] HAMADA M M. Auger-free luminescence of the BaF2∶Sr, BaF2∶MgF2 and CsBr∶LiBr crystals under excitation of VUV photons and high-energy electrons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 340(3): 524-539. [70] HAMADA M M, NUNOYA Y, SAKURAGUI S, et al. Suppression of the slow component of BaF2 crystal by introduction of SrF2 and MgF2 crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 353(1/2/3): 33-36. [71] 古佩新,胡关钦,华素坤,等.掺杂氟化钡晶体的γ辐照损伤[J].人工晶体学报,1993,22(2):152-156. GU P X, HU G Q, HUA S K, et al. Effects of dopants on γ-irradiation damage of BaF2 crystal[J]. Journal of Synthetic Crystals, 1993, 22(2): 152-156(in Chinese). [72] SPRINGIS M, VEISPALS A, KULIS P, et al. Optical and spectral properties of the Cd-containing BaF2[C]. SCINT95: Proc Int Conf on Inorganic Scintillators and their Applications, 1995: 403-406. [73] RADZHABOV E, MYSOVSKY A, EGRANOV A, et al. Cadmium centres in alkaline-earth fluoride crystals[J]. Physica Status Solidi (c), 2005, 2(1): 388-391. [74] RADZHABOV E, ISTOMIN A, NEPOMNYASHIKH A, et al. Exciton interaction with impurity in barium fluoride crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1/2): 71-75. [75] DORENBOS P, VISSER R, VAN EIJK C W E, et al. X-ray and gamma ray luminescence of Ce3+ doped BaF2 crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1991, 310(1/2): 236-239. [76] RODNYI P A, GAIN S D, GARIBIN E A, et al. Scintillators based on BaF2 with improved performance[J]. IEEE Transactions on Nuclear Science, 2012, 59(5): 2168-2172. [77] 陈俊锋,李 翔,杜 勇,等.大尺寸高质量掺钇氟化钡闪烁晶体的透光特性[J].人工晶体学报,2019,48(8):1403-1404. CHEN J F, LI X, DU Y, et al. Optical transmittance of large, high quality Y doped barium fluoride scintillation crystals[J]. Journal of Synthetic Crystals, 2019, 48(8): 1403-1404(in Chinese). [78] ANDERSON D F, BOUCLIER R, CHARPAK G, et al. Coupling of a BaF2 scintillator to a TMAE photocathode and a low-pressure wire chamber[J]. Nuclear Instruments and Methods in Physics Research, 1983, 217(1/2): 217-223. [79] SCHOTANUS P, DORENBOS P, VAN EIJK C W E, et al. Recent developments in scintillator research[J]. IEEE Transactions on Nuclear Science, 1989, 36(1): 132-136. [80] 顾 牡, 郑万辉. 掺镧抑制氟化钡晶体闪烁光慢闪烁成分的机理研究[J].核技术,1995,18(7):391-394. GU M, ZHENG W H. Study on the mechanism of lanthanum doping inhibiting the slow scintillation component of barium fluoride crystal[J]. Nuclear Technology, 1995, 18(7): 391-394(in Chinese). [81] 顾 牡,陈玲燕.掺镧氟化钡晶体的闪烁光慢成分抑制特性[J].同济大学学报(自然科学版),1996,24(1):81. GU M, CHEN L Y. Suppression characteristics of slow component of scintillation light in lanthanum doped barium fluoride crystal [J]. Journal of Tongji University, 1996, 24(1): 81(in Chinese). [82] HU C, ZHANG L Y, ZHU R Y, et al. Spatial resolution of an inorganic crystal-based hard X-ray imager[J]. IEEE Transactions on Nuclear Science, 2020, 67(6): 1014-1019. [83] HU C, ZHANG L Y, ZHU R Y, et al. Temporal response of fast and ultrafast inorganic scintillators[C]//2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings. November 10-17, 2018, Sydney, NSW, Australia. IEEE, 2018: 1-2. |
[1] | 郑大怀, 张宇琦, 王烁琳, 刘宏德, 刘士国, 孔勇发, 薄方, 许京军. 铌酸锂晶体的光折变效应[J]. 人工晶体学报, 2022, 51(9-10): 1626-1642. |
[2] | 刘杨彬, 李谦, 肖若愚, 徐卓, 李飞. 弛豫铁电单晶的生长及性能优化研究进展[J]. 人工晶体学报, 2022, 51(9-10): 1643-1658. |
[3] | 罗亮, 王承二, 余金秋. 掺Sr2+溴化铈晶体的生长与闪烁性能研究[J]. 人工晶体学报, 2022, 51(8): 1337-1342. |
[4] | 刘欢, 解玉龙, 赵素琴. 磷掺杂介孔碳的制备及其电化学性能[J]. 人工晶体学报, 2022, 51(8): 1413-1421. |
[5] | 陈仁华, 周小坚, 张小珍, 卢紫翠, 刘华锋, 程兰兰, 汪永清. 金红石型Ti1-2xCrxMoxO2黑色色料制备及其性能研究[J]. 人工晶体学报, 2022, 51(8): 1484-1491. |
[6] | 唐华纯, 李中波, 张亮. 低余辉碘化铯闪烁晶体的生长与性能研究[J]. 人工晶体学报, 2022, 51(7): 1147-1151. |
[7] | 罗东, 贾伟, 王英民, 戴鑫, 贾志刚, 董海亮, 李天保, 王利忠, 许并社. p型4H-SiC单晶衬底表征及第一性原理计算[J]. 人工晶体学报, 2022, 51(7): 1169-1176. |
[8] | 王姝予, 李天微, 郝莹, 马颖, 刘鹏, 徐英起, 顾文梅. 不同浓度Nb掺杂ZnO第一性原理研究[J]. 人工晶体学报, 2022, 51(7): 1194-1201. |
[9] | 肖友鹏. GeSe基薄膜太阳电池模拟研究[J]. 人工晶体学报, 2022, 51(7): 1270-1274. |
[10] | 武圆梦, 胡俊杰, 王淼, 易觉民, 张育民, 王建峰, 徐科. Fe掺杂GaN晶体非极性面的光学各向异性研究[J]. 人工晶体学报, 2022, 51(6): 996-1002. |
[11] | 尹佳奇, 余春燕, 翟光美, 李天保, 张竹霞. 铟镓共掺杂对n-ZnO纳米棒/p-GaN异质结生长行为和光电性能的影响[J]. 人工晶体学报, 2022, 51(6): 1012-1019. |
[12] | 崔瑞瑞, 陈倩, 张鑫, 邓朝勇. Ba3Bi2(PO4)4∶Tb3+荧光粉的制备与性能研究[J]. 人工晶体学报, 2022, 51(6): 1069-1075. |
[13] | 王志文, 马红安, 陈良超, 蔡正浩, 贾晓鹏. 硼协同掺杂金刚石单晶的高温高压合成[J]. 人工晶体学报, 2022, 51(5): 830-840. |
[14] | 牛科研, 张璇, 崔博垚, 马永健, 唐文博, 魏志鹏, 张宝顺. 单晶金刚石p型和n型掺杂的研究[J]. 人工晶体学报, 2022, 51(5): 841-851. |
[15] | 胡晓君, 郑玉浩, 陈成克, 鲁少华, 蒋梅燕, 李晓. 纳米金刚石薄膜的掺杂、表/界面调控及性能研究[J]. 人工晶体学报, 2022, 51(5): 865-874. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||